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Abstract
This report describes the key outcomes of research activities sponsored by the Department of
Energy’s Funding Opportunity Announcement (FOA) number 1861 that was aimed at advancing
the state-of-the-art in big data analytics applied to transmission-level synchrophasor
measurements. The FOA resulted in eight research grants where the awardees developed
machine learning and artificial intelligence tools and approaches. The commonalities in tools
and approaches used by the awardees are explored, and insights gained from how the project
outcomes might be operationalized are discussed. This report does not seek to
comprehensively summarize all research supported by the FOA, rather it focuses on enabling
the fast dissemination of major findings to the broader power systems community.
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1.0 Introduction
With the aim of advancing big data-driven research in power systems, the Department of
Energy (DOE) created Funding Opportunity Announcement (FOA) 1861, wherein a massive
dataset of synchrophasor measurements and event logs spanning multiple years and the three
electrical interconnections in the continental United States was collated, anonymized, and
distributed to eight FOA awardees [1–3]. An assessment of how effective the data
anonymization process was and how it impeded research is provided in [4]. The awardees
were not aware of the identities of the data contributors, the location of Phasor Measurement
Units (PMU), or the underlying transmission network topology. Nevertheless, their research
efforts highlighted how actionable insights can be derived from the massive archives of PMU
data that utilities have, and how Big Data Analysis (BDA), Artificial Intelligence (AI) and
Machine Learning (ML) methods can facilitate this process. This report highlights major
outcomes and insights from the research activities supported by DOE’s FOA 1861, identifies
commonalities in the approaches adopted by the different project teams, and discusses how to
operationalize the lessons learned. Key outcomes include-

• Robust data management platforms were built for PMU big data analytics at scale. The
project teams devised effective methods for cleaning, visualizing and performing computa-
tions on over 20 TB of PMU data. Techniques for ’streaming’ data from the archive were
also developed to emulate how the proposed algorithms would perform in near real-time
environments.

• The performance of different event detection and classification algorithms at varying Technol-
ogy Readiness Levels (TRL) were demonstrated- ranging from novel academic approaches
to commercially available proprietary tools. A byproduct was the formulation of several fea-
ture engineering methods- from statistical description to image encoding techniques, that may
prove useful for AI/ML applications beyond event detection and classification.

• Besides the events present in the utility logs, the awardees also detected and classified
numerous additional events, often with the help of subject matter experts. Open-source
synthetic event data was also created and made publicly available. As these events come
from geographically diverse systems, signatures derived from this data repository will be
broadly applicable to different power systems, and hence will help evaluate and improve the
performance of existing commercial situational awareness tools. The event signatures can
further be incorporated into educational tools for training students and operators.

• Transfer learning techniques were developed to extend models trained with data from one
interconnection to another. Methods to augment measurement data with simulations for the
purpose of training ML models were also shown for events whose field occurrences are rare.
These developments are notable because they show that models trained on a system with
good data quality can be deployed on systems with sparse historical records with relative
ease, and without having to start from scratch.

• The awardees also pursued several other research directions, such as looking for evidence
of precursors to disturbances and equipment failures, and mitigating GPS signal spoofing.
Although data anonymization and the lack of detailed labels and system knowledge made
validating these results challenging, the developed approaches have merit. System operators
can choose to evaluate these approaches with data from their footprints and pursue further
refinement if they prove promising.

Introduction 1
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This report does not seek to comprehensively summarize all research supported by the
FOA, but is rather aimed at facilitating the fast dissemination of the major findings to the
broader power systems community. Moreover, the authors have not independently evaluated
the performance/accuracy of the algorithms beyond what has been self-reported by the
awardees. Again, the intention of this report is not to judge which algorithm is the ’best’, but
rather concisely lay out the developed approaches and their suitability for various applications.

For convenience, the following nomenclature will be used to refer to the awardee projects in
the remaining report.

Table 1. Awardee project nomenclature

Reference Lead Team Members Project Title

Project 1 Ping Things Combinatorial Evaluation of Physical
Feature Engineering and Deep Temporal
Modeling

Project 2 GE Research GE Grid Solutions PMU-Based Data Analytics using Digital
Twin and PhasorAnalytics Software

Project 3 Schweitzer Engineering
Laboratories

Oregon State University Machine Learning Guided Operational
Intelligence from Synchrophasors

Project 4 Siemens Corporation Southern Methodist
University, Temple
University

MindSynchro

Project 5 University of California,
Riverside

Electric Power Group
(EPG), Michigan
Technological University

Discovery of Signatures, Anomalies, and
Precursors in Synchrophasor Data with
Matrix Profile and Deep Recurrent Neural
Networks

Project 6 University of Nevada,
Reno

Arizona State University,
IBM, Virginia Tech

A Robust Event Diagnostics Platform:
Integrating Tensor Analytics and Machine
Learning Into Real-time Grid Monitoring

Project 7 Iowa State University of
Science and Technology

Electric Power Group
(EPG), Google Brain,
IBM

Robust Learning of Dynamic Interactions for
Enhancing Power System Resilience

Project 8 Texas A&M Engineering
Experiment Station

Temple University,
Quanta Technology

Big Data Synchrophasor Monitoring and
Analytics for Resiliency Tracking
(BDSMART)

A list of technical publications from each project is provided in Appendix A. Readers are
encouraged to refer these publications for further details of methodologies only briefly described
in this report.

The rest of the report is organized as follows. Chapter 2.0 describes data management
platforms used by the awardees, and Chapter 3.0 summarizes some of the algorithms
developed. Some extracted event signatures are presented in Chapter 4.0. Chapter 5.0
presents some initial thoughts on how to operationalize key findings from the research enabled
by FOA 1861 and concludes this report.

Introduction 2
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2.0 Data Management
The PMU dataset was delivered to the awardees as snappy-compressed partitioned parquet
files on SATA hard drives. Data was provided in two installments- about 18 TB of training data
was initially delivered to train models, followed by about 7 TB of test data to evaluate their
performance on unseen measurements. The awardees had to develop efficient computation
pipelines to process this massive amount of data and discover patterns present within. This
chapter provides a high-level overview of the various tools used to realize these pipelines.

2.1 Data Storage

Two main approaches were used for storing the raw data- a) cluster-based technologies, and b)
cloud-based services, as tabulated below.

Table 2. Data Storage Methods

Approach Tools Used
Cluster-based Data is stored on servers using Apache Hadoop framework (Project 2, 5)

Cloud-based
Amazon S3 (Amazon Simple Storage Service) (Project 3)

IBM COS (Cloud Object Storage) (Project 7)

Hadoop based frameworks for storing and processing big data are popular due to their high
throughput and fault tolerant processing performance. Data is stored using the Hadoop
Distributed File System (HDFS) and queried using Apache Hive. Cloud-based storage services
are becoming increasingly popular particularly as they also enable easily scalable
high-performance downstream compute environments.

Project 1 used their proprietary PingThings PredictiveGrid platform to ingest, store and
analyze data in the Berkley Tree Database (BTrDB) that the platform is built on. In the tree
structure of the database, internal nodes store summary statistic for varying durations of the raw
data stored at the leaf nodes. A visual representation of the BTrDB structure is shown in Fig. 1.

2.2 Speeding Up Computation

Most projects used Python and its popular packages to develop their ML pipelines and
leveraged various parallelization techniques to speed up computations. The algorithms in
Project 1 were built on the proprietary PredictiveGrid Platform, and benefited from the tree-like
structure of their database that automatically computed and stored summary statistics at
different temporal resolutions. Several other projects like Project 2 and 3 also stored
minute-level summary statistics of the raw data during the initial data preprocessing stages to
accelerate downstream computations.

Project 2 developed a scalable feature generation pipeline using Spark v3.0.0 where all
computations were carried out in a distributed manner over cluster servers. Spark’s
mapInPandas transformation was used to express feature generation algorithms as map
functions that get invoked by each executor. This avoided the need to convert Spark
dataframes to Pandas dataframes (a notoriously slow process due to the data
serialization/deserialization overheads) and then carrying out feature generation computations
sequentially on a single server. Hence, computation time was greatly reduced.

GPU-based accelerations were used by several projects. For instance, Project 3 concluded
that GPU-based accelerations were particularly advantageous over distributed computing on

Data Management 3
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Figure 1. The structure of BTrDB, the database used in Project 1

CPUs as the number of features considered and algorithm complexity increased. Project 4
utilized RAPIDS cuDF, a recently released python library that provides pandas-like functionality
for performing GPU-based data processing operations, to speed up data preprocessing tasks.
Cloud-based algorithm pipelines were also adopted. Some examples are:

• Project 3 implemented a distributed computation framework using Amazon Web Services
(AWS) Elastic Compute Cloud (EC2) instances controlled by Ansible to run their disturbance
detector over the training dataset. Multiple EC2 instances were created; each instance
fetched a predetermined data chunk from Amazon S3 storage and ran the detector over
it. Metadata from the detected events were saved and stored back in Amazon S3.

• Project 7 used Kubernetes, an open-source system for automating the deployment, scaling,
and management of containerized applications. The project team containerized the devel-
oped ML libraries using Docker, hosted data on IBM COS, and utilized the Ray distributed
computing framework and OpenShift clusters to deploy their ML pipeline. They noted a ten-
fold improvement in computation time with this cloud-based framework over their previous
cluster-based solutions.

• An application was created on the MindSphere cloud platform to perform inferences based
on semi-supervised ML models already trained in Project 4. MindSphere is the industrial IoT
(Internet of Things) as a service offering from Siemens, and can be employed in industrial
applications to ingest and visualize real-time data and analytics results in one centralized
location with minimal development effort.

The project teams explored various resources before zeroing in on their final data handling
pipelines. Their experiences and lessons learned (particularly which tools did not work well or
were not mature enough when FOA 1861 activities were conducted) are shared in greater detail
in their final reports. This will prove to be a great resource for organizations looking at building
their own BDA tools and pipelines for analyzing PMU data.

Data Management 4
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3.0 Developed Algorithms
All awardee projects developed and tested event detection and classification algorithms that
directly supported the stated FOA objectives of discovering key events and unlabeled
disturbances present in the dataset for the purpose of deriving characteristic event signatures.
Some of the proposed algorithms warrant parallel implementation on individual PMUs, while
others are designed to utilize measurements from multiple PMUs simultaneously. Moreover, to
support the event detection and classification pipelines, several data preprocessing and
feature-engineering approaches were developed and may find application beyond the
use-cases demonstrated in the current research efforts.

- Metrics: Stream Quality Index (SQI) (Project 1)
- Rule-based detection of outliers, stale data and physically impossible values
- Using PMU status bit information
- Simple linear regression (Project 3)
- Event-participation decomposition model SPIKE-P (Project 5)
- Attentional LSTM models (Project 5)
- Regularized low-rank tensor completion (Project 6)
- Sample mean, minimum,  maximum and standard deviation
- Signal-to-noise ratio, Kurtosis, skewness
- Quantiles, range, coefficient of variation
- Auto-regressive measures
- Ramp-up and ramp-down rates (Project 6)
- Amplitude above and below sample mean (Project 6)
- Area above and below sample mean (Project 6)
- Continuous Wavelet Transform (Project 1)
- Linear Predictive Coding (Project 1)
- Prony analysis (Project 3,4)
- Spectral quantities (Project 4)
- Critical slowing down (Project 3)

- Markov transition field (MTF)-based image encoding of time-series (Project 7)
- Soft dynamic time warping (Project 8)
- Unsupervised anomaly detection using statistical measures (Project 1,2)
- Prony analysis-based ringdown detector (Project 3)
- Rule-based method checking rank signatures of PMU data matrices (Project 6)
- Semi-supervised Principal Component Analysis (PCA)-based normality modeling (Project 2)
- Critical slowing down+ANN (Project 3)
- Supervised graph signal processing-based method (Project 5)
- Supervised sparsity-inducing norm-based method (Project 5)
- Supervised bidirectional anomaly Generative Adversarial Network (BiAnoGAN) (Project 5)
- Supervised CNN-based models with automated denoising (Project 8)
- SEL SynchroWave (Project 3)
- EPG Automated Event Miner (AEM) (Project 5,7)

Unsupervised - Clustering followed by SME labeling (Project 4)
- Random Forests (Project 1,3,6)
- CNN using GSP-based sorting and information loading-based regularization (Project 5)
- Spatial pyramid pooling (SPP)-based CNN (Project 7)
- Deep graph learning using interaction-graphs (Project 7)
- Hierarchical CNN-based models (Project 8)
- AE-based models (Project 4)
- CNN-based safe tri-net method (Project 7)

- Mr. Plotter (Multiresolution plotter) (Project 1)
- Largest Triangle Three Buckets (LTTB) (Project 8)

Data Visualization 
(Section 3.5.2)

ML-based
Event Detection 

(Section 3.3)

Statistical/
Mathematical

Supervised

Bad Data 
Detection

Imputation

Event 
Classification 
(Section 3.4)

Semi-supervised

Statistical 
measures

Signal-
processing based

Miscellaneous

Commercial 
tools

Data Cleaning 
(Section 3.1)

Feature 
Engineering 
(Section 3.2)

Figure 2. Thematic grouping of some algorithms used by the projects supported by FOA 1861
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Some of these methods are thematically grouped and summarized in Fig. 2, which highlights
the commonalities in approaches adopted by the various awardees. The rest of this chapter
presents further details about these methodology groups. Techniques commonly used by
almost all projects have not been attributed to individual awardees in this summary.

3.1 Data Cleaning

The varying data quality across PMUs in the dataset posed major challenges to algorithm
development. Besides obvious sample drops, the data exhibited myriad issues like quantization
noise, inconsistent usage of units, stale values, and timestamp jitter. Nevertheless, the project
teams devised methods to detect and fix data quality issues before feeding the data to their
downstream analysis pipelines.

3.1.1 Bad Data Detection

All the teams used some rule-based methods for detecting statistical outliers, physically
impossible measurements (negative voltage magnitudes, voltage/current angles outside ±180◦

etc) and stale values (measurements repeated for longer than a specified threshold), and
removing them from the data. As many of these rules could be applied using only summary
statistics, identifying regions of bad data was computationally quite efficient. Project 1
formulated a composite metric called the stream quality index (SQI) to formally express the
’goodness’ of a PMU data stream. This SQI metric looked at five individual metrics- point count
density, deviation of measurements from base kV values, obviously bad values, repeated
values and timestamp jitter.

Status bits reported by PMUs can also be used to identify samples where time
synchronization and other data quality issues are present. Several projects effectively used the
PMU status bits to cleanse bad data samples. However, it must be noted that measurements
may be erroneous even when not flagged by the status bits.

3.1.2 Data Imputation

As many ML algorithms cannot handle missing data points, data imputation methods become
necessary. In many cases, when only a few intermittent samples are missing, linear
interpolation may be sufficient. In other cases with large swathes of consecutively missing data,
devising more sophisticated methods becomes necessary. Project 3 found that the simple linear
regression model was able to reconstruct missing data for one PMU using information from
other PMUs in the system, and the performance was best when using information from highly
correlated neighbors. The technique struggled the most with matching the DC trend of the data,
which can be expected as the state of the power system is always changing.

Project 6 utilized the low-rank nature of PMU data to devise a regularized tensor-completion
based data imputation method. By stacking all measurement channels of multiple PMUs into
tensors, this method is able to utilize the spatial and temporal correlations present across PMU
channels for effective data reconstruction. Data inter-dependencies and system constraints
were used as regularization terms in the low-rank tensor completion problem to restrict the
search-space to meaningful solutions and improve reconstruction accuracy.

Project 5 devised ML-based methods for data recovery. The SPIKE-P (Stochastic and
Proximal Implicit Krasulina Event-Participation) algorithm is designed for online imputation of
streaming event data- events are decomposed into non-dynamic components that represent

Developed Algorithms 6
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PMU participation in an event (derived from past data), and dynamic components that represent
disturbance magnitude (derived from current timestamp). The algorithm shows high accuracy
and fast performance. Their attentional LSTM model is also similarly aimed at online forecast of
incoming measurements.

3.2 Feature Engineering

The awardees found that feeding features engineered from the raw data to ML models had
advantages over feeding in the raw data itself, both in terms of accuracy and computational
performance. A variety of feature-engineering methods have been used in the projects,
including simple statistical descriptors over data windows, measures derived from the
frequency-domain, and more sophisticated image-encoding techniques. As these features may
be correlated, some projects leveraged dimensionality reduction techniques like Principal
Component Analysis (PCA) to reduce the number of features to be fed to ML models.

Most projects utilized statistical descriptors like sample mean, median, standard deviation,
etc., to some extent in their feature-engineering pipelines. Features based on Prony analysis (a
method of analyzing ringdown oscillations) were constructed using proprietary tools and utilized
in Projects 3 and 4 with varying degrees of success. The statistical and signal-processing
based features have the advantage of easy interpretability- it is intuitive to attribute certain
statistical/spectral behavior to particular disturbances. On the other hand, image-encoding of
time-series data, while less interpretable, can help identify complex interactions present in the
data that is not otherwise easily discernible. Dynamic time warping (DTW) can help ML models
recognize similarities in temporal sequences that are not perfectly aligned.

A detailed list of the features is available in the project reports prepared by the awardees
(Appendix A). Although the features were devised for particular ML pipelines, they can be
adopted for training models aimed at other applications.

3.3 Event Detection

Methods with varying TRLs were used for detecting events- from experimental deep neural
networks to commercially available tools.

3.3.1 Statistical and Mathematical Approaches

Some projects used summary statistics to identify anomalous periods in the data, followed by
voting strategies that accounted for how many metrics detected the anomaly and how many
PMUs ‘saw’ it in order to determine whether the anomaly was indeed an event. As digging
through the summary statistics was computationally much easier than running computations
with the raw data, awardees utilized these methods as workhorses to mine disturbances
present in the entire dataset. More computationally intensive methods were illustrated using
smaller chunks of the raw data.

Project 6 used the low-rank property of PMU data in normal operating conditions to devise a
detection algorithm. The idea is that the low-rank property does not hold during disturbances,
and hence if the rank crosses a certain threshold, events may be present in the system. A
bayesian optimization based parameter tuning method was adopted to optimally choose
threshold values. The performance of this event detection method may suffer when deployed in
smaller systems where PMUs may exhibit highly correlated response to disturbances (like
generator loss outside area), thereby not increasing the rank value significantly.

Developed Algorithms 7
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3.3.2 Commercial Tools

Commercial tools utilized included Electric Power Group’s (EPG) Automated Event Miner (AEM)
and SEL’s SynchroWave Event Detector. Both of these tools were very effective in identifying
thousands of disturbances from the two years of data, many of which had not been reported in
the utility-provided event logs. While the AEM tool was originally designed to mine historical
records, the SynchroWave platform is aimed at processing streaming data. Hence, the
SynchroWave tool had to be refactored for processing the FOA 1861 dataset.

3.3.3 ML models

Different supervised and semi-supervised ML models were trained for detecting power system
events. Using semi-supervised models was necessary due to inconsistent and incomplete
labeling in the utility-provided event logs.

In Project 2, a PCA decomposition-based method was used to fit a normality model.
Normality models are semi-supervised ML models trained from data in only one class: the
normal class. Once trained, they can predict or assess anomalies within new data, and also
estimate feature contributions to anomalies. Instances of normal operations were chosen from
periods outside the vicinity of known events present in the event logs. Each data example fed
to the normality model was the computed feature vector for one PMU at one timestamp. Based
on the trained model, anomaly scores for new data samples were calculated. Estimating which
features contributed to particular types of anomalies was beneficial for streamlining the
performance of their event classification models. The project had also investigated the use of
autoencoders, but found the PCA method to be better-suited for the application.

Project 5 explored several supervised deep learning models for the event detection task. It is
envisioned that the models will be trained offline, and then deployed online for detecting
occurrences in streaming PMU data. A graph signal processing (GSP)-based algorithm was
developed to effectively utilize spatial and temporal correlations present in streaming PMU data
for anomaly detection. The algorithm has linear time complexity in the online environment,
making it extremely scalable. The sparsity-inducing norms (SIN)-based method was designed
specifically for detecting voltage events. Here, the intuition that the low-rank property of PMU
data does not hold true during disturbances was utilized (the same principle utilized in the
rank-signature based detection method proposed by Project 6). PMU data matrices were
decomposed into a low-rank matrix, a sparse event pattern matrix, and a noise matrix. Features
computed from these matrices were then clustered using the DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) algorithm to identify the presence of anomalies. Project 5
also developed a generative adversarial network (GAN) based event detection model called
BiAnoGAN that could be trained using only a few instances of labeled events. The BiAnoGAN
was more selective than the GSP-based method, and could detect more than just voltage
events unlike the SIN-based method.

Project 8 developed several convolutional neural network (CNN)-based event detection
pipelines utilizing automated feature-learning and data denoising. The CNN-based methods
were found to outperform traditional benchmark algorithms such as logistic regression, and
support vector machines (SVM). Several awardees reported that it was easier to build standard
learning-based models (decision trees, SVM, CNN, etc.) for PMU data-driven applications.
Some projects had difficulty tuning the parameters for state-of-the art deep learning models like
Auto-Encoders (AE) and GANs, and hence could not achieve optimal performance.
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3.4 Event Classification

Binary vs. Multi-class Classification

As power system events may be categorized into multiple types and sub-types, an important
question arises here- should one use a multi-class classifier or multiple binary classifiers?
Awardees used both approaches - some developed multi-class classifiers (Project 1,5,6,8) while
others trained an ensemble of binary classification models (Project 2,3). Ensemble learning with
multiple binary event classifiers was observed to work well, whereas the performance of
multi-class models was degraded when the number of target classes increased too much
(Project 1). Good performance was obtained from 3-class and 5-class models (Project 5,6,8).

Hierarchical Classification

Project 4 and Project 8 explored the use of hierarchical classification in place of conventional
multi-class variants. In Project 4, the concept of hierarchy was used to capture the
interdependency between event labels. For instance, line trips with and without short circuits
are both line trip events and may be categorized as sub-classes within the ’line trip’ class. In
the approach taken by Project 8, data was first determined to be either normal or anomalous,
and anomalous data windows were further classified into line faults and frequency events. Such
hierarchical classification presents a promising opportunity for adding granularity to power
system event classification models.

Use of CNN Architecture

The CNN architecture was a popular choice among the awardees, with most projects utilizing it
in some form in their deep learning pipelines. This is because in recent years, CNN-based
models have shown superior performance in image classification and object identification tasks
in the computer vision domain. Multichannel PMU data can be stacked into image-like 2D
matrices or 3D tensors making them suitable to be fed into CNN-based pipelines. Project 5
utilized such a CNN-architecture and sought to improve its performance by using GSP-based
sorting of highly correlated PMUs and information-loading based regularization. Project 7 used
the Markov Transition Field (MTF) technique to encode temporal PMU data into 2D images to
be used to train a CNN-based classifier. In this pipeline, Spatial Pyramid Pooling (SPP) was
used to account for mismatches in data lengths.

3.5 Supporting Tools

In addition to end-to-end event classification pipelines, the awardees also formulated other tools
to facilitate data exploration and improve the performance of their proposed algorithms. Some
of these tools are described next.

3.5.1 Automated Labeling Applications

To obtain reasonable performance from their detection and classification models, most
awardees felt the need to refine the utility-provided event logs. Many of them relied on domain
experts to either manually label events or validate labels assigned by automated applications. A
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clustering-based approach was devised in Project 4- all detected events were divided into
several clusters using the k-means algorithm, and then domain experts inspected patterns from
each cluster and assigned event labels if the patterns were observed to be distinct. In Project 2,
the anomaly scores assigned by the normality model to event data were used to refine the
temporal precision of event logs. A heuristic temporal localization algorithm was also developed
in Project 1. The automated label improvement strategies thus developed can also help other
utilities in extracting event records from their PMU archives. These methods can significantly
reduce engineering staff burden, as domain expertise is a prerequisite for reliably creating event
labels. Unlike other deep learning applications such as image classification, the labeling
process cannot be crowd-sourced.

3.5.2 Data Visualization Techniques

Data visualization plays a critical role in data-driven knowledge discovery, especially at the data
exploration stage. Some tools used by the awardees for data visualization include-

• Mr. Plotter, or Multiresolution Plotter (Project 1): This tool, built on the PredictiveGrid plat-
form, retrieves and plots statistical aggregates of data (mean, min, max, count) stored in the
BTrDB database, which alleviates bottlenecks in fetching high volumes of raw data when
rendering plots. The result is a visualization tool that allows users to interactively visualize
time-series data containing up to millions of data points using an application that automati-
cally queries new data and intelligently adjusts the plot as users zoom and scroll. The tool
allows for seamless visual exploration of data across different time scales, thereby enabling
easy identification of periods of interest for further analysis.

• Largest Triangle Three Buckets (LTTB) (Project 8): LTTB is a downsampling technique, aimed
at preserving visual similarity to the raw data. Instead of removing uniformly spaced data
points, LTTB only removes visually redundant data points. This results in small file sizes,
thereby enabling fast querying and plot rendering. The potential for using LTTB in feature
engineering for ML pipelines has also been explored in Project 8.

3.5.3 Transfer Learning

Transfer learning refers to repurposing pre-trained models for new tasks or applications.
Projects 5 and 8 demonstrated that using transfer learning techniques, event detection and
classification models trained for one interconnection can be deployed to other interconnections
without significant drop in model accuracy. This highlights that ML algorithms trained on systems
with good data availability can be generalized to other power systems that may have limited or
inconsistent event labels. Project 8 also explored how simulation data can be used to augment
field measurements for training ML models, while mitigating issues like class imbalance.

3.5.4 Synthetic Data Generation

In order to address the lack of labeled data availability impeding the advancement of
data-driven power systems research, Project 5 used data-driven generative models to generate
almost 1000 instances of labeled synthetic data. This synthetic dataset (named pmuBAGE) has
been made publicly available to encourage benchmarking the performance of developed ML
algorithms against a standard dataset. This will prove to be a valuable resource for researchers
and developers who do not have access to field measurements.
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3.6 Approaches Requiring Further Research and Validation

In addition to the algorithms described so far, the FOA awardees also pursued applications
aimed at identifying complex patterns present in PMU data. Although the methods had merit,
some approaches were inconclusive and achieved limited success due to limitations in the
dataset itself. For instance, some findings could not be validated in the absence of detailed
event labels. As no information about the topology and spatial proximity of the PMUs was
available to the awardees, use-cases like fault localization could not be pursued and the full
potential of approaches such as graph neural networks could not be realized. Measures used
to overcome event log limitations included:

• Many projects used the spatial spread of events to judge which were more severe and hence
of greater interest to the utilities. However, in the absence of topological information, correctly
inferring this metric was a challenge. Some awardees like Project 1 used the number of
PMUs that detected an event as a proxy for the event’s spatial spread. This approach could
be misleading as PMUs in the dataset were unevenly distributed- some regions had dense
PMU clusters, whereas other areas had a relatively sparse distribution. Other awardees used
correlation studies to infer proximity information about the PMUs- Project 2 used correlations
in signal-to-noise ratio (SNR) in voltage magnitude channels, while Project 3 utilized voltage
dip proportions during faults.

• Detecting early warning signs of equipment failure is a promising application of PMU data.
However, examples of properly labeled equipment failures were rare in the event log. Awardees
used their interpretations of the log contents to identify possible failure cases, but their findings
could not be validated in the absence of additional information.

• Event start times noted in the event logs were imprecise because for most utility uses only the
general timing of the disturbance is needed. Most projects found that their detectors/classifiers
did not perform well when the utility-provided timestamps were used directly. Hence, the
awardees spent some time refining the event start times to improve the performance of their
models. For example, Project 2 utilized their trained normality model to further refine event
logs, while Project 1 developed a heuristic localizer called H-loc.

Some other approaches employed in the projects are described next.

3.6.1 Oscillation Analysis

Ringdown events detected in the dataset were analyzed in various ways by the awardees.
Project 3 identified the frequencies of the dominant modes activated by the ringdown events
and were able to generate unique fingerprints for each of the three interconnections.

Project 2 computed the frequencies and damping ratios of modes activated by the detected
ringdown events and investigated whether the modal properties could be correlated with
seasonal patterns. Their study was inconclusive. For example, they could not find evidence of
negative correlation between damping ratio and system loading conditions in the Eastern
Interconnection data. This led them to conclude that the dataset perhaps did not include PMUs
which have greater observability of the system modes.
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3.6.2 Data Anomaly Mitigation

Project 3 utilized the low-rank property of PMU data to devise a methodology for removing the
error introduced by GPS spoofing. A PCA-based method was used to learn the low-dimensional
subspace where measurement data was expected to lie. A GPS spoofing attack on a PMU
shifts its time reference, thereby introducing a fixed bias to all its phase angle measurements.
Such data with anomalies would lie outside the legitimate low-dimensional subspace learned by
the PCA-based model, which makes it possible to detect and correct the anomalies by
projecting the spoofed data onto the known legitimate subspace. It was demonstrated that the
proposed method was able to accurately reconstruct data under simulated fixed and ramped
spoofing attacks.

However, GPS spoofing is not the only way phase angle biases may be introduced into PMU
measurements. For example, it has been previously reported that leap second adjustments to
the UTC introduce such biases, and PMUs by the same manufacturer may face similar issues.
The proposed spoofing mitigation algorithm needs to be further evaluated to determine if it will
introduce additional artifacts when the time reference is affected by issues like leap second
addition and loss of clock synchronization.

3.6.3 Precursor Identification

There is evidence in the literature that the SNR in voltage magnitude measurements exhibit
greater variability in the lead up to a transformer failure [5]. Motivated by this, Project 2 sought
to find precursors to transformer failures in the FOA 1861 dataset. They used the Granger
causality model to identify links between periods of high SNR variability in voltage channels and
transformer trips reported in the event log, and found instances where high SNR variability was
observed a few hours before a reported trip. It must be noted that the reported trip events might
have been caused by factors other than transformer failure, and hence the results from this
study might need further validation. The methodology, however, may be a good starting point
for investigations by utilities.

Project 1 checked whether one minute of data (precursors) before an event can be used to
classify event types. Their experiments showed that their multi-class classifier performance was
only slightly degraded when using these precursor windows instead of event data.
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4.0 Event Signatures
Following event detection, the awardees invested significant research efforts in going through
the event repository and identifying signatures and commonalities in event groups. This
understanding of signatures helped them in fine-tuning their event classification strategies. The
investigation further yielded certain qualitative observations that not only verified power
engineering intuitions, but also proved helpful in illustrating expected system behavior to ML
practitioners with little power systems background.

Informed by the utility-provided event logs, the awardees tended to focus on three broad
groups of events- frequency, oscillation and voltage, as summarized in Table 3. Qualitative
characteristics of the categories are evident-

• Frequency events tend to manifest system-wide, persist for quite long (minute-scale), and
are characterized by wide-area sag/swell in frequency and voltage (sag in case of loss of
generation, swell for loss of load). These events are followed by step changes in active and
reactive power as flows throughout the system are redistributed.

• The timescale of oscillation events vary- ringdowns usually dissipate within tens of seconds
while forced oscillations may persist much longer. Ringdowns are seen throughout the sys-
tem, while forced oscillations may also be localized.

• Voltage events tend to be short-lived, localized and are characterized by spikes in voltages
and currents. During short circuit line/transformer faults, there usually is a large spike in
current and large dip in voltage caused by a sudden draw of power. If the fault results in a
trip, then current on the tripped line goes to zero and network power flows are redistributed.

Table 3. Event categories

Event group Event type
Frequency Loss of generation

Loss of load

Oscillation Forced oscillation

Ringdown

Voltage Line trip

Transformer trip

The awardees found that utilizing these insights about system behavior changes during
events, they were able to select different classification algorithms best-suited for each event
group. ML-based models were not particularly successful in detecting/classifying oscillation
events, while signal-processing techniques like RMS-energy based detection and Prony
analysis fared much better (Project 3,4,5,7). Project 5 developed a sparsity-based detector
specifically to look for voltage events, motivated by the fact that their GSP-based detector was
good at finding frequency events but not voltage ones.

4.1 Identified Signatures

In this section, signatures for the different event categories described in Table 3 are illustrated
with the help of recorded measurements. The signatures were observed to be consistent
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across interconnections, implying that the developed algorithms can be generalized to other
power systems as well. The plots in this section use data from multiple interconnections.

4.1.1 Frequency Events

Figure 3. Loss of generation examples. The plots show 1 minute of data.

Figure 4. Loss of load examples. The plots show 1 minute of data.

Inspecting the data for frequency events (some examples are shown in Fig. 3 and 4),
Project 4 arrived at qualitative signatures for generator and load loss events, listed in Table 4.

4.1.2 Oscillation Events

Forced oscillations are sustained periodic disturbances introduced into the system by some
external driving input. They may persist for different time-scales, ranging from seconds to
hours. Ringdown oscillations are damped oscillations caused when inter-area modes get
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Table 4. Signatures for Generator and Load Loss Events

Event type Signature

Loss of generation

Voltage drops in some lines and may have oscillations. The voltage of some lines
may also increase.
Current rises in some lines and may have oscillations. The current of some lines
may also decrease.
Frequency decreases rapidly and deviates from the nominal frequency. It then
recovers to normal after some time ranging from a few seconds to several minutes.

Loss of load

Voltage rises and recovers within a few seconds to several minutes.
Current decreases and recovers within a few seconds to several minutes.
Frequency increases rapidly due to the imbalance and returns to normal within a
few seconds to several minutes.
Oscillations may occur.

Figure 5. Forced oscillation examples. The plots show 1 minute of data.

excited following a system disturbance such as a generator or line trip. Ringdowns tend to be
apparent across wide areas, while forced oscillations can be local or widespread. Some
examples of oscillation events from the FOA 1861 dataset are shown in Figs. 5 and 6.

4.1.3 Voltage Events

Voltage events associated with line and transformer trips show similar behavior. As evident
from Figs. 7 and 8, the awardees found distinguishing between line and transformer trips to be
very challenging. Project 4 summarized the signature for general voltage events as follows:

• Voltage suddenly drops when the short circuit happens.
• Voltage returns to normal within 100ms to 2s.
• Current rises to a very high value and recovers to normal in fractions of a second or
drops to zero if it is tripped.
• Power flow changes.
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Figure 6. Ringdown oscillation examples. The plots show 10 seconds of data.

• Oscillation may occur.
• Frequency spikes.

Project 4 also noted that not all line trips were caused by faults. For instance, some trips
were due to the activation of remedial action schemes (RAS). Similarly, not all faults resulted in
trips. Faults that cleared normally were unlikely to be documented in utility logs. One may
ascertain whether a detected fault caused a trip by checking whether current flow over at least
one line decreased to zero, or whether step changes were seen in active/reactive power
following the event. Detecting faults that did not trip any equipment may help identify the
presence of high-impedance faults.

4.2 Other Events

Awardee projects also found evidence of other events such as line reconnections and
auto-reclosure actions (an example found by Project 4 is shown in Fig. 9). Reliable
identification of auto-reclosure actions can be beneficial to utilities. For example, if frequent
auto-reclosures are reported from one location, it might indicate the presence of encroaching
vegetation coming in frequent contact with power lines. If such locations are identified, utilities
can take necessary preventive actions before any major faults happen.

The events and anomalies detected by the project teams also contained many events which
do not match the signatures for any of the categories described in this chapter. Many of these
disturbances were small and may not be of interest to utilities. Project 2 used an event label
called ’operation’ in their classification model to account for some such mundane step changes
and switching actions present in the data.
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Figure 7. Line trip examples. The plots show 10 seconds of data.

Figure 8. Transformer trip examples. The plots show 10 seconds of data.
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Figure 9. Example of auto-reclosure action identified by Project 4
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5.0 Conclusion
The overarching aim of FOA 1861 was to accelerate the development of data-driven and
AI/ML-based approaches for converting large volumes of PMU data into actionable insights.
The awardees developed a variety of data repair, visualization, event detection and
classification algorithms, as well as robust infrastructure for data handling and computation
aimed at efficient execution of the end-to-end process from data retrieval to event classification.
They extracted a rich repository of labeled events, and also investigated various methodologies
for detecting precursors to impending failures, mitigating GPS spoofing attacks, and more.

While it has been recognized for a long time that ML models can aid grid operations and
alleviate the cognitive load of operators, formulating effective solutions and translating
theoretical solutions to commercial tools has been a challenge. There are several reasons
behind this, including the lack of good quality labeled field data for training models, industry
resistance to relying on opaque black-box algorithms in the context of critical infrastructure
operations, and the lack of demonstrated reliability and generalizability of ML models. As
data-driven models are not yet ready to provide full diagnosis of events and their root causes in
the field, the immediate focus of real-world deployments should be on algorithms that help in
automating aspects of operator and engineering workflows. Ideally, these algorithms would-

• better filter or highlight information, and
• augment operator memory, knowledge retrieval and keep track of the latest events.

To this end, statistical feature-based methods may be deployed in the near term to aid
operators in reducing the amount of data they have to review. Further, these methods can add
to the repository of properly-labeled events that can go on to train improved ML models.

5.1 Operationalizing the Insights

Based on insights gathered during the project period, the awardees put forth recommendations
for future actions, some of which are listed below.

• Most awardees struggled with the inconsistent labeling of events in utility-provided logs. Many
of them suggested fostering discussions in the working groups centered on formulating stan-
dardized labelling practices and using uniform terminology. A possible enhancement could
include a hierarchical label definition, reflecting different degrees of knowledge about an
event. Standard labeling practices across organizations will help create common datasets
that can be used in benchmarking the performance of different algorithms.

• Awardees also struggled with data quality issues- a lot of the measurements had artifacts
such as spurious drops, inconsistent unit usage and sudden spikes in values. As many of
the awardees spent significant time looking at these issues, Project 4 suggests the creation
of a catalogue of such signatures that can be shared with practitioners to further industry
knowledge of common PMU data quality issues.

• Project 3 found that a high-performance HDF5 data storage format provided much faster
computation performance and had much lower memory requirements than the parquet format
that the FOA 1861 data was stored in. They recommend using the same schema for big data
storage in any follow-on work.

• Algorithms developed and refined with the support of this FOA can be implemented as tools
within existing commercial wide-area measurement system (WAMS) software platforms. Ex-
tracted event signatures will also help in refining the methodologies in the existing WAMS
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platforms. Project 4 showed an example of this by developing an application implementing
their trained semi-supervised classification model on MindSphere, the industrial IoT solution
offered by Siemens.

There are other low-hanging opportunities for operationalizing the FOA research outcomes as
well. For example, the awardees developed algorithms that can reliably detect generator loss
events. These classifiers can be utilized to automatically export interesting events to event
analysis and model validation/calibration tools. Similarly, ringdown detectors can be set up to
automatically choose events for modal analysis. The repository of event signatures can also be
a valuable resource for developing educational tools for operators and university students.

5.2 Further Work

There are many avenues for future work building on the FOA 1861 effort. Some suggestions
put forth by the awardees are stated below.

• Big data visualization tools: In the foreseeable future, ML will not be replacing human opera-
tors from control rooms. Rather, it will aid human decision-making. A critical part of creating
algorithms that work in effective collaboration with humans is the design of effective interfaces
and visualizations through which algorithm outputs can be communicated. In the electric grid
context, visualization design is particularly challenging—and key—because large quantities
of complex information must be conveyed to cognitively strained operators. Hence, future
research on effective and intuitive visualization tools that reduce cognitive burden on human
operators must be encouraged. (Project 1)

• Creation of golden datasets: Project 4 recommends the creation of ’golden’ datasets that con-
tain clearly labeled and validated (ideally following a standardized labeling standard) events.
Such a dataset may be used to benchmark the performance of different proposed ML algo-
rithms, and help users choose which approach is best-suited for their application.
PNNL researchers are in the process of creating such a dataset using the huge repository of
events extracted by the FOA awardees (one of the key outcomes of this FOA). All events in
this signature library will have been validated by domain experts, and will be made publicly
available. The synthetic dataset pmuBAGE created by Project 5 will also provide a common
benchmark for algorithm performances.

• Incorporating feedback learning: As the lack of labeled data may inhibit the performance of
ML models, Project 1 suggests exploring feedback learning techniques. As the name sug-
gests, feedback learning enables the solicitation of user feedback for ML systems. Human
users could flag or confirm ML predictions, allowing algorithms to learn in deployment. Given
the paucity of labeled grid data, and the poor understanding of how training data general-
izes across contexts, this learning on the fly could, over time, greatly improve ML algorithm
performance.
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