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Disclaimer 
 

 
This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
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responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
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1 Introduction  
Data mining is the process of turning raw data into useful information. Data mining has been 
employed in many different data-rich industries, including banking, healthcare, manufacturing, 
and telecommunications. With the additions of thousands of PMUs to the nation’s power grid, the 
power systems industry has the data necessary to take advantage of data mining techniques and 
gain actionable insights.  
 
This white paper discusses the following topics related to applying data mining to the power 
systems industry: 

● provide a high level overview of data mining, 
● review how data mining has been used in various industries,  
● present common big data architecture and software languages and tools that facilitate data 

mining, and 
● provide use cases that show how data mining has been applied in the power grid 

community. 

1.1 Synchrophasor Technology Background Information 
Synchrophasor technology and systems use PMUs to monitor electrical quantities (e.g. voltage, 
current phasors, and frequency) at specific locations on an electric power system. PMUs estimate 
phasor values [1] (typically 30 or more measurements per second) using the measured 
voltage/currents and time-stamp these phasor values (synchrophasor data) using the Global 
Positioning System (GPS) signal as a reference clock for time alignment (see Figure 1-1). The 
resulting information gives transmission grid planners and operators a high-resolution view of 
power system states throughout the grid in real time and provides data for post-analysis of various 
types of disturbances such as generator trips, transmission line outages, and especially cascading 
blackouts. 

Time synchronization of key field measurements for the purpose of tracking voltage, current flows, 
local system frequency, and rate of change of frequency in electric power systems began in 1983 
[2]. At that time, measurement time synchronization was challenging especially for parts of the 
power system which are far apart (e.g. 100 miles or more). Time synchronized wide area 
monitoring was lacking fast data transfer capability, high speed computations, and high resolution 
sensors. The motivation for such a monitoring system at that time was primarily to improve the 
performance of protection systems by better understanding power system events and disturbances. 

Field demonstrations of small numbers of Phasor Measurement Units (PMUs), especially in the 
western United States, were conducted in the 1980s and 1990s to determine the usefulness of the 
technology [3]. In the early 2000s, several utilities in the eastern United States deployed PMUs 
and provided their data to Tennessee Valley Authority (TVA), where the Super Phasor Data 
Concentrator was funded, developed and first deployed. For many years, TVA aggregated and  
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Figure 1-1 - Phasor estimation using PMU connected to CT and PT [4] 

 

time-aligned the PMU data and sent a composite signal back out to all the utilities contributing 
data. This marked the early stage of shared wide-area situational awareness. 

PMU usage increased in 2004 when the U.S.-Canada investigation report of the 2003 blackout was 
released [5]. The blackout report recognized that many of North America’s major blackouts have 
been caused by inadequate situational awareness for grid operators and recommended the use of 
synchrophasor technology to provide real-time wide-area grid visibility. The report concluded that 
the August 2003 Northeast blackout could have been prevented and that immediate actions needed 
to be taken in both the United States and Canada to ensure the reliability of the North American 
electric system. One of the key findings was that new technology and investment was needed to 
provide adequate situational awareness and the ability to react to such a major disturbance. The 
North American Electric Reliability Corporation’s (NERC) Real-Time Tools Best Practices Task 
Force in 2008 recommended that real-time operational tools should have high speed capabilities, 
both in accessing and processing power system data, to ensure the reliability of electric power 
systems. 

The American Recovery and Reinvestment Act (ARRA) of 2009, which co-funded 14 projects 
(for 13 recipients) to deploy PMUs, associated communications and data management systems, 
and advanced synchrophasor applications greatly increased the number of standalone PMUs and 
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devices with PMU capabilities (such as relays) on the three major interconnection of North 
America. This effort greater increased the quantity of PMU data available. These grant recipients 
included Independent System Operators (ISOs), Regional Transmission Organizations (RTOs), 
and large and small utilities. 

In recent years, synchrophasor technology is being applied for distribution networks for better 
situational awareness in the grid. The advent of distribution level PMUs prepares the grid operators 
and planners for new paradigms in distribution including the growth of distributed energy 
resources, controllable grid edge devices, and electric vehicles [6]. 

PMUs in transmission and distribution networks bring new opportunities for more active, 
intelligent, and secure control from precise and time-synchronized measurements that make the 
grid behavior comparable between different locations.  

The high resolution of synchrophasor data (typically 30 or 60 samples per second) and the 
availability of huge volumes of data, enable application of data mining and machine learning 
techniques in both operations and planning environment. Real time applications such as situational 
awareness, event detection, real time load parameter tracking, stability monitoring etc., can 
leverage streaming synchrophasor data as well as historical data and apply data mining techniques 
to support grid operators in assessing the operating condition of the grid and provide guidance to 
operators for potential mitigation actions in case of system security threats. In the planning 
environment massive amount of recorded and stored synchrophasor data can be used for offline 
applications such as system baselining.  

1.2 Data Mining Background Information 
This subsection defines data mining in general and what it can accomplish. It also lists a few 
real-world examples of how data mining has been used in other domains. 

1.2.1 Definition and Advantages of Data Mining  
Simply put, data mining is the examination of raw data, usually large amounts of data, in order to 
gain new insight or information. Often these insights or patterns in the data are hidden because of 
the complexity and size of the data. Statistical and mathematical algorithms are employed to help 
pull useful and actionable information from the original data. This can be done more effectively 
with a particular hypothesis in mind that is being investigated, but value can still often be gained 
without prior guidance into what is of interest.  

1.2.2 How Data Mining Has Been Used in Other Domains 
Service providers and retail businesses are areas in which data mining has been successfully 
deployed and valuable insight gained. These businesses create prediction models that help them 
understand when customers may be considering leaving or be interested in buying based on past 
data. They then can follow up with specific marketing offers to help entice them into staying or 
purchasing. Online businesses often use data mining to help recommend certain products to 
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interested purchasers, without the need of a purchaser expressing previous interest in those 
products.  

Surveillance related businesses also use data mining. Credit card and other financial businesses 
use it to detect when possible fraud is occurring. Intrusion detection fields, including cyber-
security applications, help analysts distinguish between common everyday activity and 
potentially harmful intrusions. Crime prevention agencies have detected trends in crime and 
developed models to know where and when to deploy policing manpower.  

1.3 An Introduction to Big Data 
While the term “big data” has been heavily abused by marketing and sales, its meaning was 
captured by one of the first documented uses of the term in the 1997 paper, “Application-
controlled demand paging for out-of-core visualization” from NASA. The authors were 
interested in scientific data visualization, which “provides an interesting challenge for computer 
systems: data sets are generally quite large, taxing the capacities of main memory, local disk, and 
even remote disk. We call this the problem of big data. When data sets do not fit in main 
memory (in core), or when they do not fit even on local disk, the most common solution is to 
acquire more resources.” Simply put, big data are data that exceeds the capabilities of a single 
computer. Integral to this definition is that it is relative; over time the amount of data considered 
“big” changes as computing hardware evolves – today’s big data won’t be considered big in five 
years. 
 
However, this definition is not quite sufficient to understand the impact that big data has had on 
numerous industries. If an organization occasionally encounters or requires the use of data sets 
that don’t fit on a single computer, it will find an ad-hoc solution that doesn’t significantly alter 
existing workflows to achieve short-term objectives. The real transformation occurs when the 
successful operation of the organization depends upon the continued and consistent use of data 
sets at this scale. This requires the adoption of software and technology substantially different 
than the existing solutions that have supported the industry to that point.  

1.3.1 Characteristics of Big Data in the Utility Industry 
Big data often has three defining characteristics, also known as the three “V’s” of big data; these 
include (1) volume, (2) velocity, and (3) variety. 

1.3.1.1 Data Volume 
The number of sensors deployed on the grid has exponentially increased through specific utility 
programs, standardization, and industry market forces. Competition among vendors has driven 
product differentiation through the addition of sensing capabilities (i.e. multi-function relays that 
can also capture time synchronized phasor measurements) that do not significantly increase the 
overall cost. This can be seen across asset types and vendors. The heat map in Figure 1-2 below 
shows the annual volume of data generated by various types of utility sensors demonstrating that 
even with sensors deployed today, data volumes are entering the petabyte and even exabyte regime. 
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Figure 1-2 - Annual data volume generated as a function of sensor type and number of data streams. 

1.3.1.2 Data Velocity 
The physical processes defining the behavior of the grid are continuous in nature. Higher sampling 
rates allows sensors to capture faster grid dynamics, yielding previously unavailable information 
about the physical processes in question. This is in stark contrast to the industries in which data 
science arose in organizations where measurement data captured discrete events—a tweet or an 
email that arrive at a particular point in time—and additional useful information cannot be captured 
between arrivals.  
 
For utilities, there is a real need to capture higher frequency data from physical processes such as 
the voltage and current waveforms on the grid. PMUs, whose technology is now several decades 
old, offer continuous monitoring of both the transmission and distribution grid at 30Hz up to 
240Hz. Further, point-on-wave or continuous waveform monitoring was a much-discussed topic 
at the 2018 IEEE PES General Meeting in Portland, OR and sensors are capturing continuous, 
streaming measurements at 32 to 1024 samples per cycle (1920 to 61,440Hz). The exciting aspect 
of continuous waveform monitoring is that virtually every other measured quantity can be derived 
from point-on-wave data; for example, a PMU can be thought of as an edge computer that 
transforms point-on-wave into time synchronized phasor measurements. 
 

1.3.1.3 Data Variety 
Sensors have been deployed across the grid with pragmatism and financial restraint and were not 
intended to capture data for what-if scenarios or analyses that might be useful someday. Instead, 
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utility sensors have been designed, built, and deployed to address known, impactful issues. To 
exacerbate the situation, the hardware companies who design and build sensors often developed 
the associated software, intentionally written only to handle data from a particular sensor type and, 
perhaps, a single vendor. Thus, data from utility sensors, despite measuring different 
characteristics of the same grid, often reside within a fragmented, siloed environment that cannot 
provide a cohesive or integrated view of the system being measured. 
 
This is in strong contrast to the “tech” companies that started and advanced data science such as 
Google, Facebook, and Amazon. During the operation of these digital-by-default businesses, the 
fundamental act of delivering online products and services created data, without explicit sensors, 
regardless of intention to address a known problem. This “data exhaust” was often captured 
because the core competencies of these contemporary tech giants were handling data. 

1.3.2 How Big Data Architecture Is and Could Be Used in the Power Grid 
Utilities already generate "big data" in their day to day operations and the volume, velocity, and 
variety of this data relevant to the reliable, resilient, and optimal operation of the electric grid 
will only increase. All too often the data from the various types of sensors describing different 
aspects of the grid's behavior is siloed, stored in incompatible systems and thus cannot be 
combined easily. Bringing together all sensor data into one cohesive picture of the grid at 
varying resolutions and time scales and also bringing in external data will fundamentally change 
how the grid is operated. But bringing this data into one place is only the start. The data must be 
easily accessed, visualized, used, analyzed, and consumed by downstream applications that may 
get tested out and thrown away in the span of a weekend or used for the next decade.  
 
The philosophy underlying the big data revolution is that data are valuable and more of it is even 
more valuable. Unfortunately, we have also seen many examples within utilities where data are 
down-sampled or compressed in a lossy fashion, losing information describing the grid's 
behavior forever. Thus, intentionally throwing away data in an age where a terabyte of storage 
can be less than $25 is a questionable decision at best. Retaining all the data increases the 
probability that the historical archives will contain examples of rare events or system states. 
Further, what appears to be noise in higher frequency data may be the information that helps a 
machine learning algorithm predict the impending failure of an asset. Finally, as big data are 
retained and become more accessible and usable, new ideas of previously unimagined 
applications will be built, a statement virtually guaranteed by the numerous examples from 
across industries.  
 

2 Data Mining Techniques 
 
This section reviews several common data mining techniques and discusses why those 
techniques are used.  
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2.1 Feature Extraction  
Feature extraction can be thought of as a preprocessing tool. It is commonly used when data sets 
are very large and redundant information is expected within the data. The features are generally 
variables derived from the raw data. They may be simple summaries, like means or standard 
deviations, or they may be more complex, like linear or nonlinear combinations of variables. 
These features are usually much smaller than the raw data and used as inputs for different 
analytical algorithms. Multiple feature extraction methods are discussed below. 

2.1.1 Principal Component Analysis 
The main purpose of principal component analysis (PCA) is dimensionality reduction. Assuming 
the data are in a matrix format, with the rows containing the observations and the columns the 
features, the common steps to perform PCA are enumerated below.  

1. Normalize each column (zero mean unit variance). This is not a required step, but it is 
recommended, especially if the features are in different orders of magnitude (i.e. one 
feature has values around 10, while another has values around 1000). Without 
normalizing the columns, the features with higher magnitude values will receive more 
weight. 

2. Compute the covariance matrix of the data matrix (normalized data matrix, if 
normalization was done). 

3. Find the eigenvalues and eigenvectors of the covariance matrix. The sum of all 
eigenvalues is the total variance of the sample data. Choose the first n largest eigenvalues 
that account for a predetermined percentage of total variance (e.g. 80%, 90%, 95%). The 
corresponding eigenvectors make up the linear combination weights that when applied to 
the original data, creates the principal components (the new reduced dataset). 

 
Figure 2-1 is a simple example using a 17-dimensional data set consisting of the average 
consumption of 17 types of food (gm) per person per week for the four countries in UK [7]. 
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Figure 2-1. A simple example using 17-dimensional data set for the four countries in UK. 

Applying PCA to the original data in the table above reduces the dimensionality from the 17 
original variables to just two. These two new variables, referred to as pc1 and pc2 in this 
example, are linear combinations of the original variables and do not represent the same physical 
properties of the original data. The observations in {pc1, pc2} can be visualized in Figure 2-2. 

 
Figure 2-2. Visualization of Two Observations {pc1, pc2}. 

As can be seen in this plot, the two variables capture the essence of the 17 variables and show 
that N Ireland is most different from the others, especially in the first dimension (pc1). Looking 
at the values in the first eigenvector will show which of the original variables contributed most to 
pc1. 
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2.1.2 Manifold Learning  
PCA is a good technique to transform high-dimensional data to low-dimensional data using a 
linear approach. The principal components are projections of the original data to eigenvectors, 
which are lines in 2-D and planes in 3-D. PCA might be not accurate if linearity is not present in 
the original data. For example, if PCA is applied to data on a Swiss roll, the structure of the roll 
will be lost from the reduced data, as show in Figure 2-3 [8]. 

 
Figure 2-3. Data Structure Loss when Applying PCA to Data on a Swiss Roll. 

PCA finds a plane, in this case the first two principal components, to capture the most variance 
in the original data and project it onto the plane. The structure of the roll is lost in the projection. 
The red points are furthest to the blue points on the roll, but that is not the case in the reduced 
projection. Nonlinear manifold learning will make a better choice to unroll the roll and reveal the 
original structure in the reduced data.  

Manifold is a term used in geometry topology studies. It generally refers to a nonlinear 
(geometry) structure that exhibits local linear structure (Euclidean distance can be defined 
locally). Earth (globe) is a manifold, although it’s a nonlinear shape, but at a local scale it 
consists of countless small planes. Swiss roll is another example, locally it is just a plane. 

Points on a manifold can be charted onto the local linear structure using a few available 
techniques. This is how nonlinear high dimensional data are reduced to low dimensional data in 
manifold learning. Available manifold methods include IsoMap, LLE, t-SNE etc. with different 
pros and cons. In Manifold learning, it is the local linear structure that the method is trying to 
preserve, as opposed to variance as in PCA. The available techniques differ in the choice of local 
structure to preserve and will give different results. This is an active research field and there’s no 
consensus within researchers about which algorithm makes a better choice than others (it’ll 
probably depend on your data).  

Figure 2-4 is obtained by applying IsoMap on a sequence of pictures of hands with varying 
degrees of wrist rotation and finger extension. The technique is very effective in identifying the 
two variables in the original data. It is very clear that all pictures can be described by two 
variables, which, by prior knowledge about the pictures, should be finger extension and wrist 
rotation. 
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Figure 2-4. Applying IsoMap on a Sequence of Pictures of Hands with Varying Degrees of Wrist 
Rotation and Finger Extension. 

2.2 Clustering (Unsupervised Learning) 
Statistical clustering is the process of grouping similar observations or objects into groups based 
on measured variables or characteristics. This is a type of unsupervised learning because the 
groups were unknown beforehand, meaning that there is no guidance or ground truth as to what 
constitutes each group. This white paper describes parameter dependent clustering algorithms, 
which rely upon user defined inputs like number of groups or some other cutoff criteria, and 
parameter independent clustering algorithms. 

2.2.1 K-means  
K-means clustering is a popular parameter dependent clustering algorithm. K-means groups 
observations by determining which group center (mean) the observation is closest to. This 
algorithm is dependent on observations that start the algorithm, because the group means are a 
function of the previous observations that were already clustered into the groups. Usually k-
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means is run with many different random starts to help the methodology to optimize. The user 
has to define either the number of groups that are expected to exist, or the actual means of the 
groups. 

2.2.2 Hierarchical Clustering  
Another common clustering algorithm is hierarchical clustering. This method builds a hierarchy 
of clusters by either starting from the bottom up—observations begin by themselves and then 
pair with the most similar points—or top down—observations begin in one group and then split 
out by being most different. Hierarchical results are often displayed in a dendrogram, shown in 
Figure 2-5. From the dendrogram, the user can decide where to cut the tree, resulting in some 
number of groups. In this plot, this dendrogram is cut at around 16 (on the y-axis), resulting in 6 
groups, defined by the six colors. For example, the green group contains observations 34, 45, 2, 
& 10. This method requires the user to decide where to make the cut, to determine how many 
groups exist.  
 

 
Figure 2-5. Dendrogram Display for Hierarchical Clustering. 

2.2.3 Fuzzy Clustering  
Hierarchical and k-means clustering are examples of hard clustering, where each observation is 
assigned to a group. Fuzzy clustering is soft clustering, where each observation could belong to 
more than one group. Fuzzy c-means clustering algorithm is a widely used fuzzy method. It is 
similar to k-means, except that there is a term called the fuzzifier which is calculated. This term 
helps in the determination of an observation belonging to multiple groups. 
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2.2.4 DBSCAN  
The most common parameter independent clustering algorithm is DBSCAN. DBSCAN is a 
density-based clustering method that groups together observations that are packed together. This 
method marks observations as outliers that exist in low-density areas. This method defines core 
points as those where at least MinPts (user defined value of points) are within distance Eps (user 
defined value). Figure 2-6 shows a simple two-dimensional example of how DBSCAN works 
[9]. This reference also provides more information about the algorithm. 
 
 

 
Figure 2-6. DBSCAN Applied to a Simple Two Dimensional Example [9].  

2.3 Classification (Supervised Learning) 
Statistical classification is the process of determining the characteristics that define a sub-
population or group and then using that information to identify future observations that possibly 
belong to that given sub-population or group. Classification is called supervised learning because 
there are a set of observations with known group labels, which are used to determine the rules 
that define each group.  

There are many different classification algorithms. These algorithms include: linear and 
quadratic classifiers, kernel estimation, decision trees, support vector machines, and neural 
networks. Each of these algorithms is discussed in further detail below. 

2.3.1 Linear and Quadratic Classifiers 
Linear and quadratic classifiers rely upon linear (or quadratic) combinations of the various 
characteristics to create the rules that define each group. LDA (linear discriminant analysis) and 
QDA (quadratic discriminant analysis) are closely related to regression analysis and are common 
classifiers. Figure 2-7 shows graphically how LDA rules use linear cuts to define different 
groups. QDA is similar, except that the lines can be quadratic curvatures.  
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Figure 2-7. Using LDA Linear Cuts to Define Different Groups.  

 
Logistic regression is a common classification approach that is used when the outcome is binary 
(part of the group, or not). Multinomial logistic regression can be used when the response 
variable has more than two outcomes and ordinal logistic regression can be used when the 
outcomes are ordered categories. Logistic regression is analogous to linear regression, except 
that it is based on a Bernoulli distribution, instead of a Gaussian (normal) distribution. Logistic 
regression can provide probabilities calculated for each outcome.  

2.3.2 Kernel Estimation 
k-nearest neighbors is a common kernel estimation approach to classification. It is a non-
parametric method in which membership for an observation is determined by a majority vote of 
its neighbors. “k” is the number of closest neighbors to consider for membership. Figure 2-8 
gives a good example of k-nearest neighbors [10]. The point of interest (the star) would be 
classified into Class B, if k = 3, but Class A if k = 6. The researcher will have to determine the 
optimal k value. 

 
Figure 2-8. An Example of K-nearest Neighbors [10].  
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2.3.3 Decision Trees 
Decision trees use tree-like diagrams to model decisions and consequences for each observation. 
Decision rules are created from training data, where the true label is known for each observation, 
and then future observations are placed into a group based on the rules. The characteristics 
(measurements) from the observations can be numeric or categorical. The algorithm will 
determine the best place to make splits based on those measurements. Figure 2-9 is an example 
of decision trees [11]. The goal is to determine a person’s credit risk from three variables: 
income, credit history (good, bad, unknown), and debt (high, low). From this tree an individual 
can follow the tree diagram, using the rules on the tree, to determine which credit risk the 
individual belongs. 

 
Figure 2-9. An Example of Decision Trees [11]. 

 

The two most common decision tree algorithms are CART (classification and regression trees) 
and random forest. CART can be used to classify an observation into a group or calculate a 
predicted numeric value (hence “regression” in the name). Random forest is a specific type of 
decision tree that is based on an ensemble approach using bootstrapping and aggregating 
(bagging). Random forest is usually better at not overfitting as much to the training data. 
Because it is an ensemble of trees, it cannot be displayed in tree form, like in the graphic above.  
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2.3.4 Support Vector Machines  
The support vector machines (SVM) technique is based on statistical learning theory and it is used 
for learning classification and regression rules from data. When used for classification problems, 
the algorithm is usually called support vector classification (SVC) and when used for regression 
problems, the algorithm is support vector regression (SVR). Unlike other predictive model, the 
SVM technique attempts to minimize the upper bound on the generalization error based on the 
principle of structural risk minimization (SRM) rather than minimizing the training error. This 
approach has been found to be superior to the empirical risk minimization (ERM) principle 
employed in artificial neural network [12]. In addition, the SRM principle incorporates capacity 
control that prevents overfitting of the input data [13]. The SVM technique has been widely used 
in various real-world applications [14]. 

The SVM technique continues to gain popularity for prediction because of its several outstanding 
properties [15]. Some of these properties include:  

• the use of a kernel function that makes the technique applicable to both linear and nonlinear 
approximations,  

• good generalization performance as a result of the use of only the so-called support vectors 
for prediction,  

• the absence of local minima because of the convexity property of the objective function 
and its constraints,  

• and the fact that it is based on structural risk minimization that seeks to minimize the upper 
bound of the generalization error rather than the training error.  

The kernel technique is one of main building blocks of SVM. Choosing a suitable kernel function 
in SVM is equivalent to choosing an architecture for a neural network application. The use of 
kernels can overcome the curse of dimensionality in both computation and generalization. The fact 
that simply mapping data into another space can greatly simplify the classification or regression 
task has been known for a long time [16]. 

In application to classification problems, SVM can produce models with different kinds of decision 
borders - it depends on the parameters used (especially on the kernel type). The border can be 
linear or highly nonlinear. Note that the complexity of the borders does not mean poor 
generalization, because margin optimization takes care of the proper placement of the border. SVM 
minimize the empirical risk function with soft margin loss function for classification problems. 
The construction of the optimal hyperplane is the fundamental idea of SVM. The optimal 
hyperplane separates different classes with maximal margin (the distance between the hyperplane 
and the closest training data point). The construction of an optimal hyperplane is impossible if the 
data set transformed by kernel is not linearly separable. To solve this problem, the soft margin 
hyperplane technique using slack variables was introduced [12]. [17], [18], [19] describe other 
extensions of SVM. 

2.3.5 Neural Networks  
Artificial neural networks (ANN) represents a very broad class of different algorithms designed 
for classification, regression, signal processing, time series prediction, clustering, etc. Neural 
networks are built from neurons which are grouped in layers. Neurons may be connected in a 
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number of ways. The standard artificial neuron is a processing element whose output is calculated 
by multiplying its inputs by a weight vector, summing the results, and applying an activation 
function to the sum. The activation function could be one of many types. An output of a linear 
activation function is simply equal to its input. However, it is not simple for a nonlinear activation 
function. There are several types of nonlinear activation functions. Differentiable nonlinear 
activation functions can be used in networks trained with backpropagation. Some of the most 
common activation functions are the logistic function (output range between 0 and 1) and the 
hyperbolic tangent function (output range between -1 and 1). Non-differentiable nonlinear 
activation functions are usually used for perceptrons and competitive networks. The two common 
types are the threshold function (output is either a 0 or 1) and the signum function (output is either 
a -1 or 1). 

Neurons are grouped into layers, and layers are grouped into networks to form highly 
interconnected processing structures. An input layer does no processing, it simply sends the inputs, 
modified by a weight, to each of the neurons in the next layer. This next layer can be hidden layer 
or the output layer in a single layer design. A network with no hidden layer can separate linearly 
separable inputs but it will fail if the inputs are not linearly separable. Linearly non-separable 
patterns can be separated with multilayer networks. 

Neural networks with one or more hidden layers are called multilayer neural networks or 
multilayer perceptrons. Normally, each hidden layer of a network uses the same type of activation 
function. The output activation function is either sigmoidal or linear. In order to be a universal 
approximation, the hidden layer of a multilayer network is usually a sigmoidal neuron. A linear 
hidden layer is rarely used because any two linear transformations can be represented as one linear 
transformation. Some good references on ANN include [20], [21], [22]. 

 

3 Software Tools and Big Data Platforms for Data Mining  
This section discusses many of the software tools and computer languages that employ data 
mining algorithms. It also reviews some of the most common architectures used to handle big 
data.  

3.1 Data Mining Tools 
This section reviews some of the more common data mining tools. This discussion separates the 
tools into coding languages versus OTS (off the shelf) software and open source versus 
commercial. 

3.1.1 Open Source Languages 

3.1.1.1 R  
R is an open source language for statistical computing. The R language is commonly used by 
statisticians and data miners for developing analytical and graphical processes and is often the 
language of choice for the implementation of the absolutely newest statistical techniques and 
algorithms. Information pertaining to R can be found on the CRAN (Comprehensive R Archive 
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Network) website [23]. Thousands of user developed packages can be accessed on CRAN. These 
packages contain functions that perform many different algorithmic, mathematical, and graphical 
tasks. 

There are many data mining related packages accessible in R. A partial list of these packages 
includes the following:  

• nnet (neural networks) 
• rpart (decision trees)  
• randomForest (random forest) 
• gbm (boosting and gradient descent),  
• e1071 (support vector machines),  
• MASS (qda, lda, mca).  

Further information concerning machine learning packages for R language can be found in [24].  

R is a very powerful statistical software package, but it comes with a steep learning curve. There 
are no point and click or automated processes. Coding in the R language is a requirement. R 
interfaces well with C++, Python, and other programming languages. 

3.1.1.2 Python  
Python has become the de facto programming language for data analytics and machine learning, 
both for research purposes and also for operational deployment in large scale production 
systems. It is a scripting language that can be used interactively and doesn’t require compilation 
of the source code into an executable to run, making it easy to port a Python program between 
computers and Operating Systems. Python supports procedural and object oriented programming 
as well as offers some support for functional programming methodologies but not as robustly as 
purely functional languages such as Lisp and Haskell. Python can call external C or C++ 
programs, and can be embedded in other languages to implement the scripting capability. 

One of Python’s greatest assets is that it has an incredibly large ecosystem of open source 
libraries that extend the language’s capabilities, much like MATLAB’s toolboxes. NumPy offers 
a high-performance numerical computing library with highly optimized data structures for 
vectors and matrices and common mathematical functions; this library’s performance serves as 
the foundation for many other Python libraries. SciPy offers a wealth of scientific and 
engineering functions for many different disciplines and Matplotlib is a visualization library that 
was designed to mimic and replicate the functionality offered by MATLAB. However, since its 
creation, many newer data visualization libraries have been developed that offer more modern 
approaches to this problem including Seaborn, ggplot, Altair, plotly, and Bokeh. Pandas is a 
commonly used data analysis library for Python, providing a robust implementation of a data 
frame and an incredible amount of related capability.  

Scikit-learn is the Machine Learning library for Python (although there are others). It has become 
the “reference” library for machine learning algorithms meaning that once a published approach 
or algorithm has enough citations, it will almost always get implemented and added to scikit-
learn. It is a simple and efficient tool for data mining and data analysis, accessible to everybody, 
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and reusable in various contexts. The module is built on top of NumPy/SciPy and matplotlib. 
Also, scikit-learn is an open source, and commercially usable under the BSD license [25].  

Machine Learning Python (MLPY) is another Python module for Machine Learning built on top 
of NumPy/SciPy and the GNU Scientific Libraries. It provides a wide range of state-of-the-art 
machine learning methods for supervised and unsupervised problems and it is aimed at finding a 
reasonable compromise among modularity, maintainability, reproducibility, usability and 
efficiency. MLPY is multiplatform, it works with Python 2 and 3 and it is Open Source, 
distributed under the GNU General Public License version 3 [26].  

With respect to data mining related packages, Google released its neural network library 
Tensorflow under open source license in 2015. Although the library is also available to 
languages like C and Java, the full functionality is only made available to Python.  

3.1.2 Open Source Data Mining Software 

3.1.2.1 RapidMiner 
RapidMiner is a point and click, GUI interfaced data mining tool. It is free when analyzing less 
than 10,000 rows of data (less than 3 minutes of 60 Hz PMU data). The unlimited version is 
$10,000 a year. R and Python can be incorporated into RapidMiner processes. RapidMiner 
interfaces with Hadoop with their Radoop software. It has good and easy to use graphical 
capabilities. More information about RapidMiner can be found in [27].  

3.1.2.2 Weka 
Weka is a machine learning based software tool with a workbench of machine learning 
techniques and a GUI interface. It also has the capability for developers to create their own 
machine learning algorithms. Weka was founded out of New Zealand and is not a commonly 
used system. It requires data files stored in the uncommon ARFF format, although it will read in 
CSV files with some issues. More information on Weka can be found [28]. 

3.1.2.3 Orange 
Orange is a widget based open source software package with a GUI for data mining and machine 
learning methods. It allows for performing of simple data manipulation and visualizations. 
Desired processes are added in a workflow. Interacts with Python. More information on Orange 
can be found in [29].  

3.1.3 Commercial Languages 

3.1.3.1 MATLAB 
MATLAB (MATrix LABoratory) is a proprietary scripting language developed by MathWorks. 
It has many built in functions that allow for matrix manipulations, plotting, and analyses. 
Optional toolboxes can be purchased. Tall arrays allow the user to apply statistical and machine 
learning algorithms to data that cannot fit into memory. Further information about MATLAB and 
how it deals with big data can be found at https://www.mathworks.com/solutions/big-data-
matlab.html.  

https://www.mathworks.com/solutions/big-data-matlab.html
https://www.mathworks.com/solutions/big-data-matlab.html


 

24 
 

3.1.3.2 SAS 
SAS is a software suite that will manage, retrieve, mine, and analyze data. It uses a scripting 
language or a graphical point and click user interface, depending on user preference. Optional 
SAS components can be purchased to perform a variety of analyses of data. SAS/INSIGHT 
contains data mining tools and SAS/STAT contains statistical algorithms. Enterprise Miner is an 
additional component that is further discussed in the next subsection. Further information can be 
found at https://www.sas.com/en_us/home.html.  

3.1.4 Commercial Data Mining Software 

3.1.4.1 SAS Enterprise Miner 
SAS Enterprise Miner is a business enterprise solution from one of the leading statistical 
software companies, SAS. It has an easy to use GUI and can run batch jobs. It professes to have 
sophisticated data preparation, summarization, and exploration, as well as advanced predictive 
and descriptive modeling. It also provides open source integration with R. More information can 
be found in [30]. 

3.1.4.2 IBM Intelligent Miner 
IBM DB2 Intelligent Miner for Data provides many of the data mining functions discussed in 
this paper. It allows for building and applying mining models from databases or flat files. More 
information can be found in [31]. 

3.1.5 Data Stream Processing Software 

3.1.5.1 Stream Analytics 
Stream Analytics is an event processing engine that specifically works on streaming data. This 
Microsoft produced software extracts information from streaming data, by identifying patterns, 
trends, and relationships. More information can be found in [32]. 

3.1.5.2 IBM Streaming Analytics 
IBM Streaming Analytics provides fast streaming analytics that allows developers the ability to 
use existing Python code. More information can be found in [33].  

There are many other commercial and open source data streaming software solutions. For a 
listing and high level details, see [34]. 

3.2 Big Data Platforms 

3.2.1 Overview 
Two technology pathways exist to handle data sets that consistently exceed the capabilities of a 
single computer. The traditional solution was to build a bigger computer, with more memory, 
storage, and processors than a “standard” computer. These “enterprise servers” and even super 
computers are incredibly expensive. There is a large price markup for server-class components 

https://www.sas.com/en_us/home.html
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(ECC memory, server-class processors, enterprise hard drives, etc.) due to the willingness of 
large enterprises to accept these premiums and the fact that economies of scale are drastically 
reduced. As the system become larger, an increasing percentage of the server hardware becomes 
custom and the software tends to become increasingly proprietary, both causing a non-linear 
increase in price.  
 
The alternative to this approach is a solution that relies primarily on software to leverage 
commodity, off-the-shelf (COTS) computers at enormous scale. While COTS hardware may not 
be as durable as “enterprise-grade” computing equipment, failure concerns are irrelevant as the 
software is designed to handle such events gracefully. When working with hundreds or 
thousands of computers, the question is not if hardware will fail but which hardware is failing at 
the present moment. This approach to big data, using software to distribute the “big data” 
problem over lots of COTS computers has been shown to be the most cost-effective approach 
and forms the ideological basis for big data platforms today. 

3.2.1.1 Key Principles of Big Data Platforms 
Big data platforms are complex software systems designed to operate across multiple computers 
and are often composed of numerous layers of functionality. Thus, the most well-known to date, 
such as Apache Hadoop and Apache Spark are open source. Using open source software is a 
necessity as it lowers the total cost of platform development by leveraging the efforts of literally 
thousands of software engineers at almost no cost. Further, these teams of programmers will 
continue to improve and evolve each software component over time. 
 
A fundamental design principle with big data systems is that you move the computation to the 
data instead of moving the data to the code. The simple reason for this is that the network 
bandwidth connecting the computers in the platform is a fixed quantity and also orders of 
magnitude smaller than the bandwidth between process and main memory within each node. 
Therefore, it is much more efficient to move the source code that is orders of magnitude smaller 
in size than the big data. This has many implications for how the platform is architected 
including that the analytics and machine learning must be core components or “first-class 
citizens” of the platform. This is one of the fundamental reasons why it is impossible to add or 
“bolt on” real time analytics, let alone machine learning capabilities, to legacy systems with non-
scalable architectures. 
 
This concept has also been extended somewhat to fog and edge computing, where the idea is that 
computations are done locally at the sensor due to communication channel bandwidth 
constraints. As with all things, this architecture has tradeoffs. Pushing calculations to the edge is 
often done to reduce the volume of data streamed to a central location and decrease the response 
time for control applications. However, this also tends to result in a complete lack of 
transparency as the calculations done on the edge are vendor specific black boxes.  
 
The idea of “scaling” is critical to Big Data systems for many reasons. As such systems were 
designed to run in a distributed fashion, the ability to horizontally scale across computers while 
offering as close to a linear speed increase as possible is key. Further, many big data workloads 
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are “bursty,” requiring dramatically more compute resources than the baseline for short periods 
of time for full system analyses or for machine learning or deep learning algorithm training. This 
is also why big data systems are so often hosted within cloud infrastructures, either internal or 
external to the organization. Cloud-based systems offer the ability to scale out temporarily for 
large compute tasks and then immediately scale back to baseline, conserving resources. 

3.2.1.2 First Generation [2003 – 2010] 
Hadoop is the basis for first generation big data systems but is itself an open source implementation 
of Google’s distributed file system [35] and the MapReduce data processing model [36], first 
publicly described in 2003 and 2004 respectively. Hadoop’s distributed file system allowed hard 
drives across a large number of machines to appear as a single file system to the developer and 
map reduce provided a simplified programming model that allowed this distributed data to be 
processed and analyzed, often for traditional business intelligence purposes. This approach took 
advantage of the relatively inexpensive hard drives of the day and the vast bandwidth available 
when reading and writing data in parallel across a number of machines and hard drives. Further, 
Google understood that the limiting reagent was often the software engineer and this approach 
attempted to simplify the traditionally difficult task of distributed computing programming to 
increase the productivity and effectiveness of software engineers. Hadoop was designed for batch 
analytics, with large but finite data sets, and not streaming data sets that grow continuously over 
time. 

3.2.1.3 Second Generation [2010 – 2017] 
The rise of machine learning spurred the development of a second generation of general-purpose 
big data systems best exemplified by Apache Spark[37]. Machine learning algorithms not only 
require large volumes of data for successful training, but the process is an iterative one, requiring 
the application of a function repeatedly to this data for the optimization of a set of parameters, 
often through gradient descent approaches. Spark accelerates this process by keeping data in 
memory, whereas Hadoop writes the results of each mapper and reducer to disk. Where Hadoop 
leveraged the relative low cost of hard drives, Spark took advantage of the relatively low cost and, 
therefore, plentiful RAM or main memory available at the time the platform was architected. 
During this generation, the need for systems capable of handling streaming data arose, with data 
sets continuously growing without bound and requiring immediate processing to produce 
actionable output. 

3.2.1.4 Third Generation [2017 - present] 
Each generation of big data platforms was built considering the economics of solving the problems 
relevant in its day given the constraints of contemporary computing hardware. The state of the art 
has moved beyond both first generation—Hadoop’s general-purpose batch processing—and 
second generation—general purpose big datastores and processing frameworks such as Cassandra 
and Spark—big data platforms to third generation systems. Third generation platforms are 
purpose-built with specialized data structures and architectures optimized for a particular type of 
data, specific analytic use cases, and tailored to the eccentricities of particular industries. Not only 
are they far more efficient at processing their specific type of data and computing relevant 
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analytics, they demand far less effort by the analysts and engineers faced with those highly 
specialized problems.  
 
For example, take the problem of hammering in a nail. While a Swiss Army knife may have a 
suitable attachment, a standalone hammer would be more efficient at the task because the knife is 
weighed down by its other capabilities. If the original problem is hammering in one thousand nails, 
the better tool would be a nail gun: a tool more complex than the simple hammer but purpose built 
for this scale of task to accelerate the worker’s capabilities. For this reason, general purpose big-
data platforms provide lots of flexibility with little optimization for specific use cases at scale. The 
focus of a 3rd generation big data platform is to solve a particular industry’s unique problems in a 
highly cost-effective fashion.  

3.2.2 Example Platforms 
The following big data platforms were designed specifically with the electric industry in mind. 
Note that each leverages a large amount of open source software. 

3.2.2.1 PNNL’s Cloud Based Analytical Framework for Synchrophasor Data Analysis 
PNNL has been working with BPA to develop a cloud-based framework for PMU Big Data 
analysis. The framework is based on the PNNL Institutional Cloud Computing OpenStack 
installation. The Hadoop Distributed File System (HDFS) is used to store the raw PMU 
information and Apache Spark is used for data analysis and ML. The aim of this work is to develop 
technologies and techniques that improve power system situational awareness and reliability. The 
computer cluster consists of 20 nodes including one master head node. Each node is equipped with 
eight core processors, 32 GB of RAM, and 100 GB of disk storage space.  

The main functional components are diagrammed in Figure 3-1. PNNL receives the synchrophasor 
measurements as a real-time data stream from BPA, storing it at the PNNL’s Electricity 
Infrastructure Operations Center (EIOC) as a set of PDAT-formatted files. The PDAT format, 
developed by BPA, is based on the IEEE Standard C37.118.2-2011 data frames and used by the 
utility company to capture PMU measurements from multiple devices in binary files. Each file 
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contains one minute of PMU data, collected at the 60 samples per second rate. More details on the 
PMU Big Data framework design can be found in [38][39].  

 
Figure 3-1. Cloud Based Framework [39].  

3.2.2.2 PingThings’ PredictiveGridTM – Universal Sensor Analytics Platform 
PingThings’ PredictiveGrid platform is a universal sensor analytics and AI platform designed for 
utilities. It is universal in that it was designed for any and all timestamped measurements that 
inform grid operators, planners, and designers, ranging from digital fault recorders sampling the 
voltage and current waveforms at 100KHz to residential smart meters reporting measurements 
every 15 minutes. To accomplish this goal, the platform is horizontally scalable and architected to 
ingest, store, access, visualize, analyze, and learn from (train machine learning and deep learning 
algorithms with) data captured by an arbitrary number and type of sensors measuring the grid with 
nanosecond temporal resolution. Early platform benchmarks demonstrated a throughput of over 
50 million inserted values per second and 120 million queried values per second on a small, four-
node cluster. More recent testing has shown that the platform can support over 100,000 
simultaneous PMUs, each providing at least 20 streams of 60Hz data. This platform’s system 
diagram is detailed in figure below. 
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Figure 3-2 – A third generation big data platform architected specifically for sensor data and for 
the utility industry. 

The platform can be decomposed into several functional areas. Moving from left to right in the 
diagram in the figure above, it supports the ingestion of both streaming and historical data archives 
in a wide range of formats at scale via the ingest engine. Data are ingested into a database 
specifically designed for dense time series sensor data, the Berkeley Tree Database (BTrDB)[40] 
whose development was funded by the ARPA-E Micro Synchrophasors for the Distribution 
System project. Further, the platform contains a distributed analytics and computational 
framework designed to operate across time series in parallel, executing significantly faster than 
real time to handle both real time and historical analyses and the training of machine learning and 
deep learning algorithms[41]. The platform provides numerous APIs that provide not only a direct 
connection for web applications including a data explorer, dashboards, and Jupyter Notebooks for 
ad-hoc analytics but also to utility planning and operations software, allowing for the seamless 
integration of highly novel algorithms with the real world.  
 

4 Application of Data Mining Techniques with Synchrophasor Data – 
Use Cases 

 
This section contains use cases that discuss methods and results from actual applications of data 
mining tools with power grid data, and especially synchrophasor data. There are simple cases, 
which rely on queries or previous knowledge of events or anomalies to make interesting 
discoveries. There are also more complex cases that use deep learning or more complex 
algorithms that allow the data to reveal interesting patterns or events.  
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Additional use cases and challenges are discussed by experts at data analytics workshops 
available at [42][43]. Additional use cases, not discussed in this report include:  [44], [45], [46], 
[47], [48], [49], and [50]. 
 
PMU measurement data provide observations which were not possible before without the higher-
resolution, time-synchronization, and phase inclusive angle measurements provided by PMUs. 
Respectively, data mining and data-driven applications using PMU data are evolving to utilize the 
embedded information in the measurements. The high volume, velocity, and variety of PMU 
measurement data make it possible to take advantage of new machine learning and statistical 
inference in applications such as short-time events and faults detections. This section reviews some 
of the recent applications of data mining techniques using synchrophasor data. These activities are 
still in the R&D maturity level, indicating the growing interest of the power systems community 
in the application of these techniques on synchrophasor data. Short summaries of the activities are 
listed next with the corresponding references available so that the reader can access more details 
if desired.  

4.1 Event and Anomaly Detection  
PNNL has developed several statistical and ML methods and applied them to large synchrophasor 
datasets to detect different types of events (e.g., frequency or voltage) and abnormalities. The first, 
relatively simple “engineering” approach is based on user-specified thresholds for signal values 
and duration. This method is commonly used by electrical utilities to detect system events [38]. 
The second approach that is based on the multi resolution wavelet analysis which separates one-
dimensional signals into two-dimensional components that overlap in the time-frequency domain 
[51]. Wavelet-based multi-resolution analysis (MRA) uses wavelet function and scaling function 
to decompose and construct signals at various resolution levels, such that the anomaly phenomena 
can be detected and localized at each resolution level. The cluster analysis and Principal 
Component Analysis (PCA) for identifying similarities between the events were also developed. 
Clustering groups multiple objects by putting similar objects in the same group [51].  

Two other related methods are: 1) An anomaly detection method based on dynamic regression 
models and applying a Kalman filter [52]; and 2)  An ensemble based approach using statistical, 
clustering and regression approach as discussed in [53][54].  

4.2 Data Integrity Situational Awareness Tool 
PNNL has collaborated with BPA to develop a tool named “Data Integrity Situational Awareness 
(DISAT)”. The tool aims to find atypical moments in streaming PMU data. The tool is based on a 
data driven, multi-variate statistical approach and relies on multi-processing (cluster computing) 
and big data techniques. It builds a baseline of typical behavior using past data, and then compares 
current data to that baseline. Those moments in time that are different from the typical behavior 
are flagged as atypical (unusual) moments. The tool allows for further drilling down of the data, 
to help determine what unusual behavior was found. This tool was completely developed using 
the statistical programming language R. 
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Figure 4-1 shows an example atypicality during the month of September using many prior months 
of PMU data to develop the baseline. The top plot shows that two atypicalities occurred during 
that month (atypicality score exceeded the cutoff value). The bottom plot shows a drill down plot 
of a voltage magnitude that was unusual. The gray/dark background in the plot shows typical 
behavior for this voltage magnitude, while the orange plot shows its values at the atypical moment 
of interest. 

 

 

 
Figure 4-1. DISAT Example Results of Atypicality Score over Time and an Unusual Voltage 
Magnitude – PNNL [55]. 

 

4.3 A Systematic Approach for Dynamic Security Assessment and the 
Corresponding Preventive Control Scheme Based on Decision Trees 

[56] proposes a decision tree (DT) based systematic approach for cooperative online power system 
dynamic security assessment (DSA) and preventive control. This approach adopts a new 
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methodology that trains two contingency oriented DTs on daily basis by the databases generated 
from power system simulations. Fed with real-time wide area measurements, one DT about 
measurable variables is employed for online DSA to identify potential security issues and the other 
DT about controllable variables provides online decision support on preventive control strategies 
against those issues. A cost-effective algorithm is adopted in this proposed approach to optimize 
the trajectory of preventive control. An importance sampling algorithm on database preparation is 
also proposed for efficient DT training for power systems with high penetration of wind power 
and distributed generation. The performance of the approach is demonstrated on a 400-bus, 200-
line operational model of the western Danish power system. 
 
Phasor measurement units (PMU) providing high resolution real-time measurements can be used 
in the proposed DT-based approach. The flowchart of the approach is shown in Figure 4-2 and 
the proposed approach is executed based on the following stages: 
 
• Stage I: Identification of the Security Boundary.  
• Stage II: Importance Sampling.  
• Stage III: Offline time domain (T-D) Simulation and DT Training.  
• Stage IV: Online Preventive Control. 

  
 

Identification of security boundary 
based on 24-h prediction data

Generate NOC OCs based on 
importance sampling

Build a database of NOC cases with 
classifications by T-D simulations 

under specified security criteria

Build observation DT (ODT)
Build prevention DT (PDT)

Current OC violates the 
thresholds in ODT?

Determine optimal preventive 
control scheme by PDT

Compare the measurements with 
the thresholds stored in ODT

Data Base  
ODT, PDT

Online 
Measurements

End

Prediction data 
for 24-h horizon

YES

NO

Offline DT Building Online Preventive Control

Execute preventive 
control scheme

 
Figure 4-2. Flowchart of DT-based DSA and preventive control approach [56]. 

 
As shown in Figure 4-3, this systematic approach offline trains two paralleled Decision Trees 
(DTs) for each critical contingency based on 24-hour horizon system prediction data, such as load 
forecast, weather forecast, unit commitment-based generation plan, network topology as well as 
the unavailability of system elements due to scheduled maintenance, etc. Fed with online PMU 
and SCADA data, Observation Decision Tree (ODT) is employed for online Dynamic Security 
Assessment (DSA) to identify the margins of predictors against their thresholds determined from 
DT training. If any online measurements of predictors violate the thresholds, ODT would provide 
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situational awareness on insecurity if that contingency really happens. At the same time, 
Prevention Decision Tree (PDT) would provide system operators with preventive control schemes 
to drive the state to a new OC without insecurity under that contingency. Therefore, the parallel 
and cooperative utilization of PDT and ODT in the control schemes provides both the situational 
awareness and the preventive control against critical contingencies. 
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Figure 4-3. Systematic approach for DSA and preventive control scheme [56]. 

4.4 Synchrophasor-based Data Mining for Power System Fault and 
Failures Analysis 

PMUs can provide high resolution and synchronized power system data, which can be 
effectively utilized for the implementation of data mining techniques. Data mining, based on 
pattern recognition algorithms can be of significant help for power system analysis, as high 
definition data are often complex to comprehend. Three pattern recognition algorithms are 
applied to perform data mining analysis in [57]. Fault data classification is first applied, then 
frequent faults are identified and finally the root cause of a fault is identified by clustering the 
parameters behind each scenario. For such classification three algorithms are chosen, k-Nearest 
Neighbor, Naïve Bayes and the k-means Clustering [57]. 
 
Fault analysis becomes more challenging in presence of failures in protection system. An 
approach for failures diagnosis in protection system with data mining approach integrated with 
physics based analysis was discussed in [58]. 

4.5 Using Phasor Data for Visualization and Data Mining in Smart-Grid 
Applications 

[59] presents a density-based clustering (DBSCAN) technique to visualize and analyze smart-
grid data including synchrophasor data. The technique is aimed to aid in detecting bad-data, 
various fault types, and deviation on frequency, voltage or current values for better situational 
awareness [59]. DBSCAN is a density based clustering algorithm. The algorithm grows regions 
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with sufficiently high density into clusters and discovers clusters of arbitrary shape in spatial 
databases with noise. PMU data for various operating conditions are clustered by DBSCAN and 
presented in [59]. One clustering result for a line-to-ground fault-condition is shown in Figure 
4-4.  
 

 
Figure 4-4. DBSCAN Clustering Results for a Line-to-Ground Fault [59]. 

 

4.6 Synchrophasor Data Baselining and Mining for Online Monitoring of 
Dynamic Security Limits 

[60] develops a systematic approach to baseline phase-angles versus actual transfer limits across 
system interfaces and enable synchrophasor-based situational awareness (SBSA) [60]. Statistical 
methods are first used to determine seasonal exceedance levels of angle shifts that can allow 
real-time scoring and detection of atypical conditions. Next, key buses suitable for SBSA are 
identified using correlation and partitioning around medoid (PAM) clustering. It is shown that 
angle shifts of this subset of 15% of the network backbone buses can be effectively used as 
features in ensemble decision tree-based forecasting of seasonal security margins across critical 
interfaces [60]. The main steps for the proposed baselining study are shown in Figure 4-5 as 
follows:  
• Stage I: Data Filtering and Decimation. 
• Stage II: PAM Clustering. 
• Stage III: Baselining using the Exceedance Levels. 
• Stage IV: Predictive Baselining using Random Forest (RF) Models 
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Figure 4-5. Proposed Framework for Synchrophasor Data Baselining Study [60]. 

 

4.7 Power System Data Management and Analysis Using Synchrophasor 
Data 

[61] provides a synchrophasor data analysis methodology that leverages statistical correlation 
techniques in order to identify data inconsistencies, as well as power system contingencies [61]. 
This analysis includes the techniques for data management that are used to process the high-
granularity and high-cardinality data gathered from PMUs. This work utilized real, archived 
PMU data obtained from the Western Electric Coordinating Council (WECC) in order to show 
that this methodology is not only feasible, but extremely useful for power systems monitoring, 
decision support, and planning purposes. The results presented indicate preliminary identification 
of PMU data issues, as well as power system instabilities [61]. 

The proposed correlation methodology is able to distinguish between bad PMU data and power 
system events. Specifically, the Pearson Product-Moment correlation method was used to 
determine how well data are linearly correlated. Figure 4-6 shows a sample visualization using 
the proposed correlation technique. Each coordinate (square) represents the correlation 
coefficient of the two PMUs that make up its coordinates. The color of the square represents how 
close the correlation is to 1 or −1, and the sign at the coordinate represents either positively 
correlated or inversely correlated PMU pairs. Typically, a magnitude of correlation above 0.4 − 
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0.5 is considered correlated. Thus any squares depicting blue shades would be considered de-
correlated [61]. 

 
Figure 4-6. Example PMU Correlation Visualization (Topological Distance) over 1200 Data Points 
(20 Seconds) [61]. 

 

4.8 Online Dynamic Security Assessment with Missing PMU 
Measurements: A Data Mining Approach 

A data mining approach using ensemble decision trees (DTs) learning is proposed in [62] for 
online dynamic security assessment (DSA), with the objective of mitigating the impact of 
possibly missing PMU data [62]. Specifically, multiple small DTs are first trained offline using a 
random subspace method. In particular, the developed random subspace method exploits the 
hierarchy of wide-area monitoring system (WAMS), the locational information of attributes, and 
the availability of PMU measurements, so as to improve the overall robustness of the ensemble 
to missing data. Then, the performance of the trained small DTs is re-checked by using new 
cases in near real-time. In online DSA, viable small DTs are identified in case of missing PMU 
data, and a boosting algorithm is employed to quantify the voting weights of viable small DTs. 
The security classification decision for online DSA is obtained via a weighted voting of viable 
small DTs. A case study using the IEEE 39-bus system demonstrates the effectiveness of the 
proposed approach [62]. Figure 4-7 illustrates the test results for online DSA in case of missing 
PMU measurements. It compares multiple approaches including DT using surrogates, random 
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forest with and without surrogates and the proposed approach. It is observed that the proposed 
approach has much better performance than others.  

 
Figure 4-7. Performance of Online DSA in Case of Missing PMU Measurements [62]. 

 

4.9 Online Calibration of Phasor Measurement Unit Using Density-based 
Spatial Clustering 

Global Energy Interconnection Research Institute North America (GEIRI North America) 
developed a framework named “Power System Parameter Calibration System (PSPCS)” for 
PMU data calibration. The proposed approach for PMU data calibration is an online calibration 
of the overall bias error in PMU data without knowing the exact system model. An unsupervised 
data mining technique named “density-based spatial clustering of applications with noise 
(DBSCAN)” is used in the proposed approach. PSPCS was tested by using both simulated data 
and real PMU data. Figure 4-8 shows a test result using real PMU data. PSPCS is now 
implemented at the grid dispatch center of Jiangsu Electric Power Company, China [63]. 
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Figure 4-8. Test Result Summary by Using Real PMU Data [63]. 

 

4.10  SRP/ASU PMU-Based Online Monitoring of Critical Power System 
Assets 

To go beyond the readily visible values (phasor magnitudes & angles) presented by 
synchrophasors raw data, people also design new metrics/statistics that can be calculated out of 
the synchrophasors and use them to facilitate data mining.  

Salt River Project (SRP) and Arizona State University (ASU) are developing a new analytics tool 
to predict major power system asset failure with synchrophasor data [64]. The project goes 
beyond the standard vision of synchrophasors – voltage magnitude, voltage angle, current 
magnitude, current angle, imaginary current and real current, etc., it proposes to leverage the 
metric called Signal-to-Noise-Ratio (SNR) as the main data signature. SNR can be calculated for 
each signal stream.  

Progress has been made to reveal the failure of a major piece of equipment in SRPs system in 
June of 2016, the 500/230kV Rudd transformer. According to the SNR that is computed at 
different times away from the transformer failure (one year ago, one month ago and the same 
day), as depicted in Figure 4-9, noticeable pattern differences are observed, which can be 
leveraged for potential asset failure prediction. 
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Figure 4-9 SNR of voltage phase magnitude from a neighboring substation of the Rudd 
transformer at 3 different time periods [64] 

Failure in protection system assets were analyzed and monitored using DBSCAN approach as 
outlined in [58][65]. 

4.11 PMU-Based Load Monitoring with anomaly detection 
High resolution PMU data can be used to track load parameters but data quality is challenging. A 
novel adaptive search-based algorithm to estimate load model parameters is presented in 
[66][67]. A static load model is used with the Z (constant impedance), I (constant current), and P 
(constant power) components of the load. Prony analysis and adaptive window based approach 
were developed to eliminate anomalies in the input data for accurate estimation of the load 
parameters. 
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5 Conclusions 
 
The large amount of synchrophasor data produced in the daily operation of modern power 
systems has become a valuable resource for the development of advanced applications for both 
real-time operational, as well as offline planning environment.  
 
An area of research that has recently attracted the interest of the power systems industry, is the 
application of artificial intelligence, machine learning and data mining techniques with high 
resolution time synchronized measurements. Application of data mining has been growing 
recently in various industries with many success stories.  
 
This report summarizes the state-of-the-art in data mining and big data analytics, and documents 
ongoing R&D activities and use cases in the power grid using synchrophasor data. Several data 
mining techniques are briefly introduced in chapter 2. Chapter 3 provides an overview of the 
state-of-the-art data mining software and platforms. Both open source and commercial tools are 
covered.  
 
Chapter 4 reviews several R&D use cases that adopt data mining techniques with synchrophasor 
data analysis. These use cases comprise both industrial R&D and academic research efforts, and 
serve as good demonstrations of application of data mining techniques and tools with 
synchrophasor data. 
 
 
  



 

41 
 

6 References 
[1] A primer on synchrophasors and phasor values is provided in the report “Synchrophasor Technologies 

and their Deployment in the Recovery Act Smart Grid Programs” dated August 2013. 
https://www.smartgrid.gov/recovery_act/program_impacts/applications_synchrophasor_technology 

[2] A.G.Phadke, J.S.Thorp, M.Adamiak, “A New Measurement Technique for Tracking Voltage Phasors, 
Local System Frequency, and Rate of Change of Frequency,” IEEE Transactions on PAS, May 1983. 

[3] D. T. Rizy, et. al., “The Future of GPS-Based Electric Power System Measurements, Operation and 
Control”, Proceedings of the 11th International Technical Meeting of the Satellite Division of the 
Institute of Navigation (ION GPS 1998), Nashville, TN, September 15 - 18, 1998. 

[4] Modified from R.F. Nuqui, “State Estimation and Voltage Security Monitoring Using Synchronized 
Phasor Measurements”, Doctorate Dissertation, Virginia Polytechnic Institute, Blacksburg, VA, July 2, 
2001. 

[5] “Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and 
Recommendations,” US-Canada Power System Outage Task Force. 

[6] “Micro-synchrophasors for distribution systems,” Alexandra Von Meier, David Culler, Alex 
McEachern, Reza Arghandeh, IEEE Innovative Smart Grid Technologies Conference (ISGT), 2014. 

[7] Partha Sarathi Kar, “Principal Component Analysis”, Linkedin Slide Share, [Online]. Available at: 
https://www.slideshare.net/ParthaSarathiKar3/principal-component-analysis-75693461 

[8] Marina Meil˘a, “Is Manifold Learning for Toy Data Only?” [Online]. Available at: 
https://www.stat.washington.edu/mmp/Talks/mani-MMDS16.pdf 

[9] “DBSCAN: What is a Core Point?” Cross Validated Question. [Online]. Available at: 
https://stats.stackexchange.com/questions/194734/dbscan-what-is-a-core-point.  

[10] M. Ivan, “Classification using k-Nearest Neighbors in R”, [Online]. Available at: 
https://en.proft.me/2017/01/22/classification-using-k-nearest-neighbors-r/.  

[11] “Decision Tree Maker: Quickly and easily create decision trees and more”, SmartDraw, LLC. 
[Online]. Available at: https://www.smartdraw.com/decision-tree/decision-tree-maker.htm.  

[12] V. Vapnik, S.E. Golowich, and A. Smola. (1996). Support vector method for prediction, regression 
estimation, and signal processing. Advances in Neural Information Processing Systems. San Mateo, 
CA: Morgan Kaufmann Publishers. 

[13] C.M, Bishop (1995). Neural Networks for Pattern Recognition. Oxford: Clarendon Press. 

[14] A.J. Smola and B. Schölkopf (2004). A tutorial on support vector regression. Statistics and Computing, 
14: 199-222. 

[15] L. Cao, and F.E.H, Tay. (2003). Support vector machine with adaptive parameters in financial time 
series forecasting. IEEE Transactions on neural networks 14 (6): 1506-1518. 

[16] V. Cherkassky, and Y. Ma. (2004). Practical selection of SVM parameters and noise estimation for 
SVM regression. Neural Networks, 17 (1): 113-126. 

[17] J. Ma, T. James, and P. Simon. (2003). Accurate on-line support vector regression. Neural 
Computation, 15: 2683-2703. 

https://www.slideshare.net/ParthaSarathiKar3?utm_campaign=profiletracking&utm_medium=sssite&utm_source=ssslideview
https://www.slideshare.net/ParthaSarathiKar3/principal-component-analysis-75693461
https://www.stat.washington.edu/mmp/Talks/mani-MMDS16.pdf
https://stats.stackexchange.com/questions/194734/dbscan-what-is-a-core-point
https://en.proft.me/2017/01/22/classification-using-k-nearest-neighbors-r/
https://www.smartdraw.com/decision-tree/decision-tree-maker.htm


 

42 
 

[18] O.A. Omitaomu. (2006). On-line Learning and Wavelet-Based Feature Extraction Methodology for 
Process Monitoring using High-Dimensional Functional Data. University of Tennessee, Knoxville, 
Ph.D. Dissertation. 

[19] O.A. Omitaomu. (2013). Intelligent Process Monitoring and Control Using Sensor Data. Germany: Lap 
Lambert Academic Publishing, March. 

[20] C.M. Bishop (1995). Neural Networks for Pattern Recognition. Oxford University Press, London, 
UK. 

[21] S. Haykin (1994). Neural Networks - A Comprehensive Foundation. Maxwell MacMillian Int., New 
York. 

[22] D. Ripley (1996). Pattern Recognition and Neural Networks. Cambridge University Press. 
Cambridge. 

[23] “The Comprehensive R Archive Network”, CRAN Project. [Online]. Available at: https://cran.r-
project.org/.  

[24] T. Hothorn, “CRAN Task View: Machine Learning & Statistical Learning”, CRAN Project. [Online]. 
Available at: https://cran.r-project.org/web/views/MachineLearning.html/  

[25] “scikit-learn: Machine Learning in Python”, Scikit-learn Home Webpage. [Online]. Available at: 
http://scikit-learn.org/stable/#.  

[26] D. Albanese, R. Visintainer, S. Merler, S. Riccadonna, G. Jurman, C. Furlanello. mlpy: Machine 
Learning Python, 2012. 

[27]  “Lightning Fast Data Science Platform”, RapidMiner. [Online]. Available at: 
https://rapidminer.com/. 

[28] “Weka 3: Data Mining Software in Java”, Machine Learning Group at the University of Waikato. 
[Online]. Available at: https://www.cs.waikato.ac.nz/ml/weka/index.html.   

[29] “Data Mining Fruitful and Fun”. Orange. [Online]. Available at: https://orange.biolab.si/.  

[30] “SAS Enterprise Miner”, SAS. [Online]. Available at: 
https://www.sas.com/en_us/software/enterprise-miner.html.  

[31] “IBM DB2 Intelligent Miner for Data”, IBM Knowledge Center. [Online]. Available at: 
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_9.5.0/com.ibm.im.overview.doc/c_ibm_
db2_intelligent_miner_for_data.html.  

[32] “What is Stream Analytics?”, Microsoft Azure. [Online]. Available at: https://docs.microsoft.com/en-
us/azure/stream-analytics/stream-analytics-introduction.  

[33] “Streaming Analytics: Details”, IBM. [Online]. Available at: https://www.ibm.com/cloud/streaming-
analytics/details.  

[34] “Top 18 Open Source and Commercial Stream Analytics Platforms”, Predictive Analytics. [Online]. 
Available at: https://www.predictiveanalyticstoday.com/top-open-source-commercial-stream-
analytics-platforms/.  

[35] Ghemawat, S., Gobioff, H., and Leung, S. “The Google File System”, Proceedings of the Nineteenth 
ACM Symposium on Operating Systems Principles - SOSP '03(2003) 

[36] Dean, J. and Ghemawat, S. 2004. “MapReduce: simplified data processing on large clusters”, In Proc. 
of the 6th conference on Symposium on Operating Systems Design & Implementation - Volume 6 
(OSDI'04), Vol. 6. USENIX Association, Berkeley, CA, USA, 10-10. 

https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/web/views/MachineLearning.html/
http://scikit-learn.org/stable/
https://rapidminer.com/
https://www.cs.waikato.ac.nz/ml/weka/index.html
https://orange.biolab.si/
https://www.sas.com/en_us/software/enterprise-miner.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_9.5.0/com.ibm.im.overview.doc/c_ibm_db2_intelligent_miner_for_data.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_9.5.0/com.ibm.im.overview.doc/c_ibm_db2_intelligent_miner_for_data.html
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://www.ibm.com/cloud/streaming-analytics/details
https://www.ibm.com/cloud/streaming-analytics/details
https://www.predictiveanalyticstoday.com/top-open-source-commercial-stream-analytics-platforms/
https://www.predictiveanalyticstoday.com/top-open-source-commercial-stream-analytics-platforms/


 

43 
 

[37] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. 
“Spark: cluster computing with working sets”, In Proceedings of the 2nd USENIX conference on Hot 
topics in cloud computing (HotCloud'10). USENIX Association, Berkeley, CA, USA, 10-10. 

[38] Etingov PV, Z Hou, H Wang, H Ren, DV Zarzhitsky, J De Chalendar, D Kosterev, AJ Faris, and S 
Yang. 2017. "Cloud Based Analytical Framework for Synchrophasor Data Analysis." In CIGRE US 
National Committee 2017 Grid of the Future Symposium, Cleveland, Ohio, October 22-25, 2017. 

[39] PNNL and BPA, “PMU Big Data Analysis Based on the SPARK Machine Learning Framework”, 
presented at JSIS Meeting, May, 2017. [Online]. Available at: 
https://www.wecc.biz/Administrative/08%202017-05-23%20JSIS%20Spark%20ML-Etingov.pdf.  

[40] Andersen M and Culler D, “BTrDB: Optimizing Storage System Design for Timeseries Processing”, 
Fast '16 14th USENIX Conference on File and Storage Technologies, Feb 2016 

[41] Andersen M, Kumar S, Brooks C, von Meier A, and Culler DE. 2015. “DISTIL: Design and 
implementation of a scalable synchrophasor data processing system”, In Smart Grid Communications, 
2015 IEEE International Conference on. IEEE, 271–277 

[42] Workshop on “Data Analytics for the Smart Grid”, August 28th, 2017, Pullman, WA, Proceedings 
Available at: https://sgdril.eecs.wsu.edu/workshop_conferences/data-analytics-for-the-smart-grid-
dasg/ 

[43] Workshop on “Real Time Data Analytics for the Resilient Electric Grid”, August 4-5, 2018, Portland, 
WA, Proceedings Available at: https://sgdril.eecs.wsu.edu/workshop_conferences/real-time-data-
analytics-for-the-resilient-electric-grid/Grids, 2017 

[44] Luca Schenato, Grazia Barchi, David Macii, Reza Arghandeh, Kameshwar Poolla, and Alexandra von 
Meier. “Bayesian linear state estimation using smart meters and pmus measurements in distribution 
grids.” In International Conference on Smart Grid Communications (SmartGrid-Comm), pages 572–
577. IEEE, 2014. 

[45] Reza Arghandeh, Martin Gahr, Alexandra von Meier, Guido Cavraro, Monika Ruh, and Goran 
Andersson. “Topology detection in microgrids with micro-synchrophasors”. In Power & Energy 
Society General Meeting. IEEE, 2015. 

[46] G Cavraro, R Arghandeh, “Power Distribution Network Topology Detection with Time-Series 
Signature Verification Method”, IEEE Transactions on Power Systems, 2017 

[47] Reza Arghandeh, Yuxun Zhou, “Big Data Application for Power Systems”, Book, Elsevier, Oxford, 
UK, 2017. 

[48] Y. Zhou, R. Arghandeh, and C. Spanos, “Partial knowledge data-driven event detection for power 
distribution networks”, IEEE Transactions on Smart Grid, pp. (99), 2017. 

[49] Y. Zhou, R. Arghandeh, I. C. Konstantakopoulos, S. Abdullah, A. von Meier, and C. J. Spanos, 
“Abnormal event detection with high resolution micro-pmu measurement”, In IEEE Power Systems 
Computation Conference. IEEE, 2016. 

[50] Y. Zhou, R. Arghandeh, and C. J. Spanos. Online learning of contextual hidden markov models for 
temporal-spatial data analysis. In IEEE Conference on Decision and Control (CDC 2016), 2016. 

[51] Ren H., Hou Z., Wang H., Zarzhitsky D., Etingov P. “Pattern Mining and Anomaly Detection based 
on Power System Synchrophasor Measurements,” in Proceedings of the 51st Hawaii International 
Conference on System Sciences, 2018. 

https://www.wecc.biz/Administrative/08%202017-05-23%20JSIS%20Spark%20ML-Etingov.pdf
https://sgdril.eecs.wsu.edu/workshop_conferences/data-analytics-for-the-smart-grid-dasg/
https://sgdril.eecs.wsu.edu/workshop_conferences/data-analytics-for-the-smart-grid-dasg/


 

44 
 

[52] Ren H., Hou Z., Etingov P. “Online Anomaly Detection Using Machine Learning and HPC for Power 
System Synchrophasor Measurements,” PMAPS conference, June 24-28, 2018 (accepted). 

[53] M. Zhou, Y. Wang, A. K. Srivastava, Y. Wu, and P. Banerjee. "Ensemble based Algorithm for 
Synchrophasor Data Anomaly Detection." IEEE Transactions on Smart Grid (2018). 

[54] A. Srivastava, “SyncAD: Ensemble Based Data Mining Tool for Anomaly Detection In PMU data 
and Event Detection”, Joint Synchronized information Subcommittee, Oct. 11-13, 2017 Westminster, 
CA 

[55] PNNL, “Phase Angle Monitoring Using DISAT”, presented at JSIS Meeting, May, 2017. [Online]. 
Available at: https://www.wecc.biz/Administrative/08%202017-05-
23%20JSIS%20Phase%20Angle%20Monitoring%20Using%20DISAT-Amidan.pdf.  

[56] C. Liu, K. Sun, et al, “A systematic Approach for Dynamic Security Assessment and the 
Corresponding Preventive Control Scheme Based on Decision Trees”, IEEE Trans. Power Systems, 
vol. 29, No. 2, pp 717-730, March 2014. 

[57] M. Al Karim, M. Chenine, K. Zhu and L. Nordstrom (2012). Synchro-phasor based Data Mining for 
Power System Fault Analysis. 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe 
(ISGT Europe), Berlin, p:1-8. 

[58] B. Cui, A. Srivastava, and P. Banerjee. "Automated Failure Diagnosis in Transmission Network 
Protection System Using Synchrophasors." IEEE Transactions on Power Delivery (2018). 

[59] A. Mukherjee, R. Vallakati, V. Lachenaud, and P. Ranganathan (2015). Using phasor data for 
visualization and data mining in smart grid applications. IEEE First International Conference on DC 
Microgrids, p:13-18. 

[60] Anissa Kaci, Innocent Kamwa, Louis-A. Dessaint, and Sébastien Guillon (2014). Synchro-phasor 
data baselining and mining for online monitoring of dynamic security limits. IEEE transactions on 
power systems, Vol. 29, No. 6, p:2681-2695. 

[61] Rich Meier, Ben McCamish, David Chiu and Miles Histand (2014). Power system data management 
and analysis using synchro-phasor data. IEEE conference on technologies for sustainability, p:225-
231. 

[62] Miao He, Vijay Vittal and Junshan Zhang (2013). Online Dynamic Security assessment with missing 
PMU Measurements: A Data Mining Approach. IEEE transactions on power systems, Vol. 28, No. 2, 
p: 1969-1977. 

[63] Di Shi, Xinan Wang, Zhiwei Wang, Xiao Lu, ChunleiXu and ZhihongYang (2017). Online 
Calibration of Phasor Measurement Unit Using Density-based Spatial Clustering. NASPI group 
meeting. 

[64] Malhar Padhee, Anamitra Pal and Matthew Rhodes, “PMU-based Online Monitoring of Critical  
Power System Assets” [Online] Available at: https://www.wecc.biz/Administrative/13_PMU-
Based%20Online%20Monitoring%20of%20Critical%20Power%20System%20Assets_JSIS-
May%202018.pdf 

[65] A. Srivastava, “Failure Diagnosis and Cyber Intrusion Detection in Transmission Protection System 
Assets using Synchrophasor Data”, NASPI meeting, March 2017 

[66] Tushar, S. Pandey, A. Srivastava, P. Markham, and M. Patel, “Online Estimation of Steady-State 
Load Models Considering Data Anomalies”, IEEE Transactions on Industry Applications, 2017 
 

https://www.wecc.biz/Administrative/08%202017-05-23%20JSIS%20Phase%20Angle%20Monitoring%20Using%20DISAT-Amidan.pdf
https://www.wecc.biz/Administrative/08%202017-05-23%20JSIS%20Phase%20Angle%20Monitoring%20Using%20DISAT-Amidan.pdf
https://www.wecc.biz/Administrative/13_PMU-Based%20Online%20Monitoring%20of%20Critical%20Power%20System%20Assets_JSIS-May%202018.pdf
https://www.wecc.biz/Administrative/13_PMU-Based%20Online%20Monitoring%20of%20Critical%20Power%20System%20Assets_JSIS-May%202018.pdf
https://www.wecc.biz/Administrative/13_PMU-Based%20Online%20Monitoring%20of%20Critical%20Power%20System%20Assets_JSIS-May%202018.pdf


 

45 
 

[67] Tushar, H. Lee, P. Banerjee, and A. K. Srivastava, “Synchrophasor Applications for Load Estimation 
and Stability Analysis”, IET Power and Energy Series, Synchronized Phasor Measurements for Smart  

 


	1 Introduction
	1.1 Synchrophasor Technology Background Information
	1.2 Data Mining Background Information
	1.2.1 Definition and Advantages of Data Mining
	1.2.2 How Data Mining Has Been Used in Other Domains

	1.3 An Introduction to Big Data
	1.3.1 Characteristics of Big Data in the Utility Industry
	1.3.1.1 Data Volume
	1.3.1.2 Data Velocity
	1.3.1.3 Data Variety

	1.3.2 How Big Data Architecture Is and Could Be Used in the Power Grid


	2 Data Mining Techniques
	2.1 Feature Extraction
	2.1.1 Principal Component Analysis
	2.1.2 Manifold Learning

	2.2 Clustering (Unsupervised Learning)
	2.2.1 K-means
	2.2.2 Hierarchical Clustering
	2.2.3 Fuzzy Clustering
	2.2.4 DBSCAN

	2.3 Classification (Supervised Learning)
	2.3.1 Linear and Quadratic Classifiers
	2.3.2 Kernel Estimation
	2.3.3 Decision Trees
	2.3.4 Support Vector Machines
	2.3.5 Neural Networks


	3 Software Tools and Big Data Platforms for Data Mining
	3.1 Data Mining Tools
	3.1.1 Open Source Languages
	3.1.1.1 R
	3.1.1.2 Python

	3.1.2 Open Source Data Mining Software
	3.1.2.1 RapidMiner
	3.1.2.2 Weka
	3.1.2.3 Orange

	3.1.3 Commercial Languages
	3.1.3.1 MATLAB
	3.1.3.2 SAS

	3.1.4 Commercial Data Mining Software
	3.1.4.1 SAS Enterprise Miner
	3.1.4.2 IBM Intelligent Miner

	3.1.5 Data Stream Processing Software
	3.1.5.1 Stream Analytics
	3.1.5.2 IBM Streaming Analytics


	3.2 Big Data Platforms
	3.2.1 Overview
	3.2.1.1 Key Principles of Big Data Platforms
	3.2.1.2 First Generation [2003 – 2010]
	3.2.1.3 Second Generation [2010 – 2017]
	3.2.1.4 Third Generation [2017 - present]

	3.2.2 Example Platforms
	3.2.2.1 PNNL’s Cloud Based Analytical Framework for Synchrophasor Data Analysis
	3.2.2.2 PingThings’ PredictiveGridTM – Universal Sensor Analytics Platform



	4 Application of Data Mining Techniques with Synchrophasor Data – Use Cases
	4.1 Event and Anomaly Detection
	4.2 Data Integrity Situational Awareness Tool
	4.3 A Systematic Approach for Dynamic Security Assessment and the Corresponding Preventive Control Scheme Based on Decision Trees
	4.4 Synchrophasor-based Data Mining for Power System Fault and Failures Analysis
	4.5 Using Phasor Data for Visualization and Data Mining in Smart-Grid Applications
	4.6 Synchrophasor Data Baselining and Mining for Online Monitoring of Dynamic Security Limits
	4.7 Power System Data Management and Analysis Using Synchrophasor Data
	4.8 Online Dynamic Security Assessment with Missing PMU Measurements: A Data Mining Approach
	4.9 Online Calibration of Phasor Measurement Unit Using Density-based Spatial Clustering
	4.10  SRP/ASU PMU-Based Online Monitoring of Critical Power System Assets
	4.11 PMU-Based Load Monitoring with anomaly detection

	5 Conclusions
	6 References

