

Topics of Interest

Novel Applications for Synchronized Power Instrumentation (NASPI) leadership is seeking abstracts for the upcoming NASPI work group meeting in Chicago, Illinois, from April 14-15, 2026

There is particular interest in receiving abstracts that showcase innovative and novel applications of wide-area time-synchronized technology to solve operational or other electric power reliability and resilience challenges. Presentations delivered in partnership with grid owners or operators are encouraged. Topics outside those noted below will still be considered.

This information and updates will be noted on the [NASPI website](#)—please share with your colleagues.

Cross-Cutting Topics

- Success stories, challenges, and lessons learned from field deployment of synchronized measurement systems and tools.
- Real-time monitoring and post-event analysis for large loads, e.g., data centers.
- Utilization of AI that takes advantage of large datasets of synchronized measurement information
- High-speed waveform measurements that augment traditional synchrophasor measurements for additional resolution of high-speed phenomena.
- Resilient timing impacts and demonstrations.
- Statistical analysis and deep learning for extracting actionable information from large datasets.
- Use of synchronized measurements to support the integration of inverter-based resources.
- Incorporating advanced sensors into measurement infrastructure, including mixing different types of measurements and using heterogeneous measurements to make decisions.
- Visualization and human factors, including cognitive systems engineering, decision support, and human-machine interfaces.
- Any other novel and timely topics related to time-synchronized measurements that would be of interest to the broader NASPI community.
- The use of synchrophasor data for closed loop generator control

Control Room Solutions Task Team (CRSTT) Topics

- The use of real-time synchrophasor applications for the purpose of improving control room operations and grid reliability.
- Training to support control room deployment.
- Enhancing wide-area protection schemes utilizing time-synchronized measurements.

Distribution Task Team (DisTT) Topics

- The use of time-synchronized measurements to enhance distribution system operations and/or planning applications.
- Benefits of and key success factors in deploying synchronized measurement in distribution systems.

Data and Network Management Task Team (DNMTT) Topics

- Cloud-based deployment success stories and challenges, e.g., availability of cloud-specific tools.
- Advanced architectures for networking and communications technologies.
- Experience with data networking, architecture, archiving, and other supporting technologies.
- Requirements for time-synchronized measurement applications, e.g., data quality and measurement uncertainty.
- Advances in synchronized measurement technology adoption through standardization, testing, or other technological accomplishments.

Engineering Analysis Task Team (EATT) Topics

- The use of time-synchronized measurements in transmission applications, including advanced protection and wide-area control schemes.
- Extracting actionable information from synchronized measurements to characterize system health, detect equipment failures, evaluate grid disturbances, analyze oscillations, etc.
- Real-time monitoring and mitigation of new oscillations emerging from modern grid resources.
- Support for post-commissioning monitoring for grid resources that transmission operators are prescribing in their interconnection requirements.