

NASPI Planning Committee Presentation on Data Management

NASPI, Long Beach

May 9, 2007

Joe Chow Rensselaer Polytechnic Institute, Troy, New York, USA

www.ecse.rpi.edu/homepages/chowj

NASPI Planning Committee

Phasor Data Requirements for Off-line Application Analysis

WECC Phasor Data

- i. Sampling at 30 points/sec
- ii. All sampled data start on integer second, with GPS signal arrival
- iii. BPA PDC provide data in dst format. Several programs can read dst format – PNNL DSI program, SCE Power System Outlook program
- iv. Data import into MATLAB straightforward, either directly from dst format or indirectly from csv format

NASPI Planning Committee

Phasor Data Requirements for Off-line Application Analysis

EI: Oconee event (2/15/2007 16:49:00) data

Companies	PMU locations * - transmitting data to TVA	Data retrieval	Record length	Data format	Points per sec
AEP*	Jackons Ferry, Kanawha River, Orange, Matt Funk, Rockport	AEP PDC	1 hour	CSV	30
TVA*	Collinsville, Cumberland, Volunteer, Cordova	TVA PDC	20 min	Access database	15
NYISO	Edic, Athens (Mehta DSR)	modem	5 min, triggered event	CSV	60
NYISO*	Niagara, Robinson Road, Marcy 765, Marcy 345 (2), Fraser, Blenheim-Gilboa	modem	3 min, triggered event	comtrade	6
NYISO*	Farragut (NYC)	TVA PDC	Not available then		?

NASPI Planning Committee

Phasor Data Requirements for Off-line Application Analysis

Desired mode of Data Verification and Collection in El

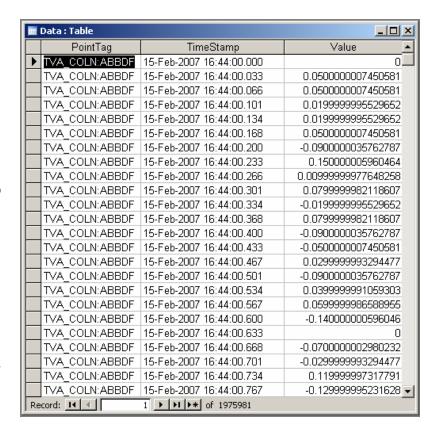
- i. Synchronization phasor data synchronized to exact seconds
- ii. Sampling rate possible rates: 6, 10, 12, 15, 30, and 60 points/sec. Suggested minimum rate of 30 points/sec for data conditioning.
- iii. Data verification examine phasor data from various locations to check calibration, timing, etc.
- iv. Data collection, e.g., at and from TVA PDC output phasor data with a common sampling rate to same file. Let researchers do resampling to align data. Preferred data file formats dst, csv, comtrade
- v. Data export time, voltages, currents; frequency can be computed from bus angles
- vi. Long-term data storage disturbance data should be stored forever at high-sampling rates

Data Collections and Issues

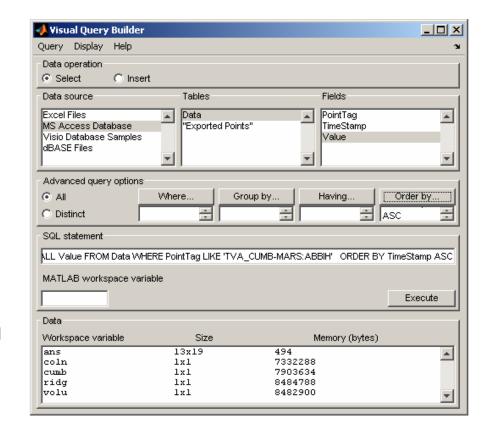
1. Oconee event (2/15/2007 16:49) data

- AEP data in good shape
- ii. TVA data
 - a. Data in rows of three entries: variable label, time tag, and value
 - b. ASCII output results in non-consecutive records
 - c. Database can be read by MATLAB database toolbox, but difficult to automate
 - Data loss: random, total loss of 5 seconds in 20 minutes; time consuming to locate data gap

iii. NYISO


- a. Mehta DSR seemed to indicate a voltage oscillation, not seen in other data
- b. PMU data some time tagging problems, comtrade conversion issues?
- 2. Sampling rate what is the minimum?

Exporting issues:


- Export data for analysis in scientific environments (MATLAB, etc.)
- Data exporting options are limited to ASCII .txt files and .csv files (readable by MATLAB and Excel)
- Excel is limited to 65,536 rows by 256 columns.
 - TVA Data arranged in rows.
- ASCII .txt files: will contain data swapping which is difficult to detect.

Exporting TVA PDC Data (2)

- MATLAB Database Toolbox:
 - Connects the MS
 ACCESS OBDC
 database directly to
 MATLAB.
 - Uses SQL commands to build query to extract data into MATLAB.
 - Visual query builder can be used to form a query.

- Processing issues:
 - Data Extraction can be time consuming: 1 individual query per PMU Channel
 - Example: RIDG PMU has 15 channels + time tag → 16 queries must be built.
 - 4 TVA PMUs: 55 channels + 4
 time tags → 59 queries.
 - Large amount of data: requires more computing capability (both RAM and CPU)

	RIDG PMU CHANNELS
1	TVA_RIDG:ABBDF
2	TVA_RIDG:ABBF
3	TVA_RIDG:ABBS
4	TVA_RIDG-BUS1:ABBV
5	TVA_RIDG-BUS1:ABBVH
6	TVA_RIDG-BUS2:ABBV
7	TVA_RIDG-BUS2:ABBVH
8	TVA_RIDG-HAWT:ABBI
9	TVA_RIDG-HAWT:ABBIH
10	TVA_RIDG-OGLE:ABBI
11	TVA_RIDG-OGLE:ABBIH
12	TVA_RIDG-PSR3:ABBV
13	TVA_RIDG-PSR3:ABBVH
14	TVA_RIDG-PSR5:ABBV
15	TVA_RIDG-PSR5:ABBVH
	+ TIME TAG

Exporting TVA PDC Data (4)

Data Loss:

- Data loss in the PMU Data of RIDG PMU.
- How to detect and treat lost data samples?

PMU DATA	EXPECTED TIME TAG
16:44:14.000	16:44:14.000
16:44:14.032	16:44:14.032
16:44:14.066	16:44:14.066
16:44:14.099	16:44:14.099
16:44:14.133	16:44:14.133
16:44:14.167	16:44:14.167
16:44:14.200	16:44:14.200
16:44:14.232	16:44:14.232
16:44:14.266	16:44:14.266
16:44:14.300	16:44:14.300
16:44:14.333	16:44:14.333
16:44:14.367	16:44:14.367
16:44:14.400	16:44:14.400
16:44:14.432	16:44:14.432
16:44:14.466	16:44:14.466
16:44:14.499	16:44:14.499
	16:44:14.533
DATA GAP	16:44:14.567
	16:44:14.600
	16:44:14.632
16:44:14.666	16:44:14.666
16:44:14.700	16:44:14.700
16:44:14.733	16:44:14.733