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About this Document 
This document is intended to provide a broad overview of the sources, characteristics, and 

analyses of natural and forced oscillatory behaviors in power systems. These aspects are 

necessarily linked. Oscillations appear in measurements with distinguishing characteristics 

derived from the oscillation’s source. These characteristics determine which analysis methods 

can be appropriately applied, and the results from these analyses can only be interpreted 

correctly with an understanding of the oscillation’s origin. To describe oscillations both at their 

source within a physical power system and within measurements, a perspective from the 

boundary between power system and signal processing theory has been adopted. The power 

system is viewed as a generic system of inputs and outputs without emphasizing swing 

equations, generator models, etc. Similarly, the analysis methods used in examples have been 

selected to represent multiple broad classes, rather than to emphasize the performance of specific 

methods.  

 

Intended for multiple audiences, this document can be used in a variety of ways. Considering 

each section will provide the reader with the fundamentals needed to understand power system 

oscillations and begin applying the described methods. Readers uninterested in applying signal 

processing methods may focus on sections describing oscillation sources and characteristics and 

skip those discussing analyses. Others with a solid understanding of power systems may focus 

primarily on content related to modeling and analysis to broaden their perspective. Whatever the 

case, the authors hope that this document provides the reader with a new and useful perspective 

on the important topic of power system oscillatory behavior.  
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1. Introduction 
Oscillatory behavior in power systems has been and remains of great interest to engineers and 

researchers. In the past, most of this interest was placed on modal, i.e., natural, oscillations 

because of their relationship to system-wide events. Recently, a great deal of work has focused 

on forced oscillations, which can be related to equipment misoperation or failure. As interest in 

forced oscillations has increased, so has the need for a common understanding of oscillation 

sources, characteristics, analysis techniques, and associated terminology. A good first step 

towards such a common understanding was made by the Joint Synchronized Information 

Subcommittee (JSIS) of the Western Electricity Coordinating Council (WECC) with the 

development of a document providing brief definitions, descriptions, and examples related to 

power system oscillations (Trudnowski D. , Pierre, Donnelly, & Venkatasubramanian, 2015). 

The goal of the present document is to build from this foundation to provide a more 

comprehensive discussion. 

 

A key goal of this document is to communicate the connections between an oscillation’s source, 

its resulting characteristics, and how it can be properly analyzed. Common pitfalls and 

descriptions of why analysis techniques fail when applied to the wrong oscillation type will also 

be provided. Though a broad set of references for established methods is included, only a 

selection of algorithms will be used for examples due to the vastness of the power system 

oscillation analysis literature. This document does not make an effort to compare the 

performance of various algorithms, except where demonstrating that an algorithm is not designed 

for a specific application. Rather, examples using a specific algorithm are intended to represent 

the operation of a broader class of analysis techniques. Before beginning, a detailed discussion of 

power system oscillations and analysis techniques, some background and overviews for topics in 

the document are provided in the following section. 

2. Background 
A brief overview of the theory that will be referenced throughout the document is provided in 

this section. To begin, Section 2.1 provides an overview of the system responses that are the 

focus of this document. A description of how measurements containing these system responses 

are used to develop measurement-based models is provided in Section 2.2. Signal processing 

considerations important to the successful fitting of these models are described in Section 2.3. 

Finally, Section 2.4 contains a description of the simple model that has been used to generate the 

example data analyzed throughout this document.  In this section, only enough information to 

provide context for the rest of the document has been provided, so the authors refer the interested 

reader to the referenced texts for more detailed discussions.  

 

2.1. Overview of System Responses 
Depending on initial conditions and inputs, systems can display a variety of responses in their 

measured outputs. The development of Phasor Measurement Unit (PMU) networks has 

dramatically increased the availability of measurements containing these system responses. 

Commonly observed and analyzed responses related to power system oscillations were defined 

in (Trudnowski D. , Pierre, Donnelly, & Venkatasubramanian, 2015). These definitions, with 

some additional clarifications for this document, are listed below. Examples of the various 

responses are provided in Figure 2-1. 
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Natural Response:  A Natural Response is an oscillation characterized by the oscillatory 

modes only. In this document, inter-area electromechanical modes are considered 

specifically. 

Ambient Response:  An Ambient Response is the response of the system to the small 

random changes within the system.  These changes are typically characterized by small 

random load changes. They are an example of a Natural Response. 

Transient Response:  A Transient Response is the response of the system immediately 

after a sudden disturbance, such as a fault, line tripping, generator trip, or load tripping.  

Small-scale transient responses are typically characterized by a Natural Response.   

Forced Response:  A Forced Response is the response of the system associated with an 

external input or a malfunctioning apparatus.  Examples include a malfunctioning steam 

valve cycling on and off, or an arc furnace inducing its dynamics into the grid.  Forced 

oscillations may include harmonics resulting from the periodicity of the external inputs. 

 

 
Figure 2-1: Typical examples of ambient, transient, and forced responses. The model used to 

generate this output is described in Section 2.4. 

 

Natural responses, as indicated in the definition above, are related to the system’s dynamics 

through the electromechanical modes of oscillation. In a power system, inter-area 

electromechanical modes are a characteristic of how generators in disparate parts of the system 

exchange energy. This exchange manifests as low-frequency oscillations (generally between 0.1 

and 1 Hz) in electrical and mechanical power, as well as other related parameters. Along with 

frequency, the modes are often characterized by their damping and shape. A mode’s damping 

influences how quickly (and if) a related oscillation subsides, and is therefore the parameter most 

closely tied to system stability. A mode’s shape describes the grouping and relative participation 

of generators in an oscillation. It is parameterized by a magnitude and angle at each measurement 
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location. Generators in areas where the mode shape magnitude is largest are the strongest 

participants in the mode. Generators with similar mode shape angles tend to oscillate together. 

They oscillate against, i.e., exchange energy with, generators from areas where the mode shape 

angles are nearly 180° away. When natural response oscillations occur in power systems, their 

characteristics – frequency, damping, and shape – are inherited from the system’s modes. 

 

In contrast, the form of a forced response depends on the input driving the oscillation. For 

example, the frequencies of forced oscillations are determined by the frequency of their 

associated input, regardless of the frequencies of the system’s inter-area electromechanical 

modes. The fundamental distinction between natural and forced responses can be summarized as 

follows: the form of a natural response depends on the system, while the form of a forced 

response depends on the driving input. This distinction explains why natural responses, but not 

forced responses, can be analyzed to estimate the system’s inter-area electromechanical modes.  

 

Because the power system behaves linearly in the vicinity of a steady-state operating point, the 

outputs of the system are the superposition of the various responses. For example, when a forced 

oscillation is occurring in otherwise ambient conditions, the outputs of the system are sums of 

natural and forced responses. In some cases, which will be described in this document, it is 

important to consider the presence of the forced response in order to properly analyze the natural 

response. If the forced response is not considered, measurement-based models, such as those 

described in the following section, may poorly reflect the true system.  

2.2. Overview of Measurement-Based System Models 
One approach to estimating a power system’s electromechanical modes is to build a detailed 

model of the system and its components. This document focuses on a complementary approach 

that uses power system measurements to create models of the system and associated signals. 

These system models do not include generators, transmission lines, etc. Instead, they are 

mathematical descriptions of how the power system translates inputs to measured outputs. 

Measurements from PMU networks are particularly useful for this task because they are 

synchronized and geographically dispersed.  

 

By analyzing measurements, which contain the system responses described in the previous 

section, specific values for the model’s parameters can be selected. Once this is done, the 

relationship between the model’s structure and the system’s electromechanical modes can be 

exploited to estimate the modes. To provide examples of these relationships and for reference 

throughout the document, the following subsections provide overviews of two models that are 

commonly used in measurement-based modal analysis. 
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2.2.1. State-Space Models 
In this section, a brief discussion of state-space models is provided. A fuller treatment of this 

material can be found in (Kundur, 1994). State-space models represent the system using a set of 

ordinary differential equations of the form 

 

  �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑒𝑒(𝑡) + 𝐵𝑢𝑢(𝑡) (1a) 

 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑒(𝑡) + 𝜇(𝑡) (1b) 

 

where 𝑥(𝑡) is the state vector, 𝑒(𝑡) is a vector of random system perturbations, 𝑢(𝑡) is a vector 

that describes control actions such as low-level probing and load pulses, 𝜇(𝑡) is measurement 

noise, 𝑦(𝑡) is the measured output of the system, and 𝑡 is time. A closer examination of this 

model, particularly the input vectors 𝑒(𝑡) and 𝑢(𝑡) will be provided in later sections. Here, the 

relationship between the state matrix 𝐴 and the system’s inter-area electromechanical modes will 

be examined.  

 

The eigenvalues of the state matrix are the complex valued 𝜆𝑖 that satisfy the characteristic 

equation given by 

 

 det(𝐴 − 𝜆𝐼) = 𝜆𝑛𝑎 + 𝑎1𝜆
𝑛𝑎−1 + ⋯+ 𝑎𝑛𝑎−1𝜆 + 𝑎𝑛𝑎

= 0 (2) 

 

where 𝑛𝑎 is the order of the square matrix 𝐴, 𝐼 is an appropriately sized identity matrix, and 𝑖 =
1,2, … , 𝑛𝑎. These eigenvalues are complex valued and are often expressed as 

 

 𝜆𝑖 = 𝜎𝑖 + 𝑗𝜔𝑖. (3) 

 

A subset of these eigenvalues correspond to the system’s dominant inter-area electromechanical 

modes. To identify which ones, the frequencies 

 

 𝑓𝑖 =
𝐼𝑚𝑎𝑔(𝜆𝑖)

2𝜋
 (4) 

 

with units of Hz, damping ratios 

 

 𝜁𝑖 = −
𝜎𝑖

|𝜆𝑖|
× 100 = −cos(∠𝜆𝑖) × 100 (5) 

 

with units of percent, and associated mode shapes can be examined. Because complex 

eigenvalues appear in conjugate pairs, it is common to focus on those with positive frequencies.  

 

Letting 𝑣𝑖 denote the right eigenvector corresponding to eigenvalue 𝜆𝑖, the mode shape between 

states 𝑝 and 𝑙 is expressed as a magnitude 

 

 |𝑀𝑆𝑝𝑙| =
|𝑣𝑖,𝑝|

|𝑣𝑖,𝑙|
 (6) 
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along with angle 

 

 ∠𝑀𝑆𝑝𝑙 = ∠𝑣𝑖,𝑝 − ∠𝑣𝑖,𝑙 (7) 

 

where 𝑣𝑖,𝑝 denotes the 𝑝𝑡ℎ element of the 𝑖𝑡ℎ eigenvector. Mode shape is normally evaluated by 

comparing states from throughout the system with a reference state. The mode shape magnitudes 

relate the level of participation of states in an oscillation, while the angles indicate which states 

are grouped together in the oscillation.  

 

Often, the mode shape between measured system outputs is desired if the system states are not 

directly measured, e.g., using substation voltage angle from a PMU rather than a generator rotor 

angle. The mode shape between measured outputs relates to that of the system states by first pre-

multiplying the right eigenvectors by output matrix 𝐶, i.e., 𝑣𝑖
(𝑦) = 𝐶𝑣𝑖. The mode shape between 

measured outputs 1 and 2 thus become 

 

 |𝑀𝑆12
(𝑦)

| =
|𝑣𝑖,1

(𝑦)
|

|𝑣
𝑖,2
(𝑦)

|
 (8) 

and 

 

 ∠𝑀𝑆12
(𝑦)

= ∠𝑣𝑖,1
(𝑦)

− ∠𝑣𝑖,2
(𝑦)

 (9) 

 

Because measurement-based modal analyses are based on sampled data, the relationship between 

the continuous-time model described thus far and the discrete-time state-space model  

 

 𝑥(𝑘 + 1) = 𝐴𝐷𝑥(𝑘) + 𝐵𝑒
𝐷𝑒(𝑘) + 𝐵𝑢

𝐷𝑢(𝑘) (10a) 

 𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑒(𝑘) + 𝜇(𝑘) (10b) 

 

is important to consider. Here 𝑘 is the sample index corresponding to time 𝑡 = 𝑘𝑇 where 𝑇 is the 

sampling interval,  

 

 𝐴𝐷 = 𝑒𝐴𝑇 (11) 

 

is the discrete-time version of the state-matrix in (1a), and 𝐵𝑒
𝐷 and 𝐵𝑢

𝐷 are the discrete-time 

versions of the input matrices in (1a) (Kamen & Heck, 2007). There is no difference between the 

continuous- and discrete-time versions of 𝐶 and 𝐷 (Kamen & Heck, 2007). The eigenvalues of 

𝐴𝐷 are the complex valued 𝑧𝑖 satisfying  

 

 det(𝐴𝐷 − 𝑧𝐼) = 𝑧𝑛𝑎 + 𝑎1𝑧
𝑛𝑎−1 + ⋯+ 𝑎𝑛𝑎−1𝑧 + 𝑎𝑛𝑎

= 0. (12) 

 

They are related to the continuous-time eigenvalues through 

 

 𝜆𝑖 =
1

𝑇
ln(𝑧𝑖). (13) 
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Because the continuous-time eigenvalues appear in conjugate pairs, the discrete-time eigenvalues 

do as well. Measurement-based modal analysis methods based on a state-space model estimate 

the matrices in (10) and then use the relationships described in this section to obtain estimates of 

the electromechanical modes as continuous-time eigenvalues. The mode shape estimates are 

obtained directly from the eigenvectors of 𝐴𝐷 as with the continuous-time case. 

 

2.2.2. ARMAX Models 
Though AutoRegressive Moving Average eXogenous (ARMAX) models can model inputs and 

outputs as vectors, in power system applications they are often implemented with scalar inputs 

and outputs. In this document, this simplified case is considered. The ARMAX model can then 

be expressed as the difference equation 

 

 𝑦(𝑘) = −∑ 𝑎𝑖𝑦(𝑘 − 𝑖)
𝑛𝑎
𝑖=1 + ∑ 𝑏𝑖𝑢(𝑘 − 𝑖)

𝑛𝑏
𝑖=0 + ∑ 𝑐𝑖𝑒(𝑘 − 𝑖)

𝑛𝑐
𝑖=1 + 𝑒(𝑘) (14) 

 

where 𝑘 is the sample index corresponding to time 𝑡 = 𝑘𝑇 with sampling interval 𝑇, 𝑦(𝑘) is the 

measured system output, 𝑢(𝑘) is a deterministic input, 𝑒(𝑘) models aggregated random system 

perturbations, 𝑛𝑎 is the AR model order, 𝑛𝑏 is the X model order, and 𝑛𝑐 is the MA model order. 

For 𝑢(𝑘) = 0, the transfer function obtained by applying the z-transform to (14) is 

 

 
𝑌(𝑧)

𝐸(𝑧)
=

1+∑ 𝑐𝑖𝑧
−𝑖𝑛𝑐

𝑖=1

1+∑ 𝑎𝑖𝑧
−𝑖𝑛𝑎

𝑖=1

=
𝑧𝑛𝑎(1+∑ 𝑐𝑖𝑧

−𝑖𝑛𝑐
𝑖=1 )

𝑧𝑛𝑎+𝑎1𝑧𝑛𝑎−1+⋯+𝑎𝑛𝑎−1𝑧+𝑎𝑛𝑎

. (15) 

 

Note the relationship between the roots of the denominator polynomial, which as the model’s 

poles determine its stability, and (12). Mode-estimation algorithms operate by estimating the 

coefficients in (14), finding the roots of the denominator polynomial in (1), and converting to 

continuous-time poles via (13). The frequency and damping ratio of electromechanical modes 

can then be obtained using (4) and (5). Note that mode shape cannot be evaluated with a model 

based on measurements from a single location. Multi-channel ARMAX methods do exist that 

can estimate mode shape along with the modes (Dosiek & Pierre, Estimating electromechanical 

modes and mode shapes using the multichannel ARMAX model, 2013), but because most of the 

concepts in this paper can be discussed with a single-input single-output model, this simpler 

approach is taken.  

 

2.3. Signal Processing Considerations 
The proper application of signal processing techniques to power system measurements is crucial 

when fitting the models described in the previous section. It can also make the distinguishing 

characteristics of oscillatory behaviors more apparent. In this section, the discussion focuses on 

three of the most important aspects of a signal that warrant consideration: record length, 

sampling rate, and frequency. A brief description of these aspects and how they can be 

manipulated is provided here as background to discuss proper analysis techniques later in the 

document. 

 

Generally, signal processing algorithms perform better as the record length increases for a fixed 

sampling rate. This is of particular interest in power system applications due to their challenging 

nature. However, power systems are constantly changing, so it is often important to limit record 
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lengths to capture a single operating condition. For example, algorithms used to monitor the 

electromechanical modes in near-real time would be useless if applied to multiple hours of data 

because the modes can change dramatically within that time span. To obtain accurate and 

informative estimates, it is important that the user selects an appropriate record length. Similarly, 

the sampling rate is an important consideration.  

 

The fundamental importance of the sampling rate of a signal is that it limits the range of the 

signal’s frequency content that can be reliably observed. For the common PMU frame rates of 30 

and 60 frames per second, frequencies up to 15 and 30 Hz, respectively, can be observed. For 

some applications, particularly analysis of electromechanical modes, it is beneficial to limit the 

frequency range to more narrowly cover the range of interest. This is accomplished by 

decimation, which is the process of lowering the sampling rate of a signal by removing samples 

after applying an appropriate filter. For example, decimating to 5 samples per second limits the 

observable frequency range from 0 to 2.5 Hz.  

 

For a visual, though not rigorous, explanation of how adjusting a signal’s frequency content can 

impact analysis, recall that the electromechanical modes are captured in the models as the 

discrete-time poles 𝑧𝑖. From (13), the discrete-time poles can be written in terms of their 

continuous-time counterparts as 

 

 𝑧𝑖 = 𝑒𝑇𝜆𝑖 = 𝑒𝑇(𝜎𝑖+𝑗𝜔𝑖) = 𝑒𝑇𝜎𝑖𝑒𝑗𝑇𝜔𝑖 = 𝑒𝑇𝜎𝑖∠𝑇𝜔𝑖 = 𝑒𝑇𝜎𝑖∠2𝜋
𝑓𝑖

𝑓𝑠
, (16) 

 

where 𝑓𝑖 is the frequency of the 𝑖𝑡ℎ mode in units of Hz and 𝑓𝑠 is the sampling rate of the signal. 

As an aside, note that the 𝑧𝑖 will remain inside the unit circle as long as 𝜎𝑖 < 0, which relates 

well known conditions for stability in discrete- and continuous-time systems. With (16) in mind, 

consider a system’s dominant electromechanical modes, which tend to have frequencies between 

0.1 and 1 Hz and damping ratios (well) below 20%. For a high sampling rate of 𝑓𝑠 = 60, the 𝑧𝑖 

for these frequencies and damping ratios will be in the range indicated in Figure 2-2. It is 

difficult for algorithms to accurately estimate multiple modes in such a small region. However, 

after decimating to 𝑓𝑠 = 5, the 𝑧𝑖 will be in the much larger region depicted in Figure 2-3. Signal 

processing algorithms tend to be better able to estimate multiple modes in this larger region. To 

understand why, note that for any value of 𝜆𝑖 in (16), the 𝑧𝑖 approach (1∠0°) as 𝑓𝑠 increases and, 

consequently, 𝑇 decreases. This behavior tends to introduce numerical problems. Further, high 

sampling rates force algorithms to fit models to high frequency noise well beyond the true 

system bandwidth. For further discussion, see (Ljung, 1999). 
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Figure 2-2: Region in the z-domain that electromechanical modes tend to occupy for a sampling 

rate of 60 samples per second. 

 
Figure 2-3: Region in the z-domain that electromechanical modes tend to occupy for a reduced 

sampling rate of 5 samples per second. 

 

As mentioned previously, decimating is accomplished by filtering the signal and then removing 

samples to lower the sampling rate. Without filtering, the frequency content and sampling rate of 

the signal would not match, leading to aliasing. Anti-aliasing filters are only one variety of filters 

that are useful in the analysis of power system oscillations. 

 

Filtering can be implemented for a variety of reasons, but its general purpose is to limit the 

frequency content of a signal to improve analysis results. For example, it may be beneficial to 

remove the low-frequency trends of a signal via high-pass filtering to eliminate the effects of 
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generators ramping up and down or to remove DC components. Properly filtering a signal can 

improve the signal processing results, but it must be done with care to avoid distorting signals in 

undesirable ways. The same is true with all of signal processing – care must be taken. For each 

of the oscillation behaviors described in the following sections, some comments and cautions 

regarding proper signal processing are provided. 

 

2.4. Simple Model for Example Data Generation 
Previous subsections have focused on theory that will be referenced throughout the document. In 

this section, the simple model used to generate data for examples throughout this report is 

described. The model is based on transfer functions, which are one approach to describing how a 

set of inputs to a system are manipulated to form a set of outputs. A conceptualization of the 

model is presented in Figure 2-4. Each input and output corresponds to one of three areas. The 

areas are connected, so every input affects every output. To describe these interactions, transfer 

functions to the three outputs were designed for each input, resulting in a total of nine transfer 

functions. Each was designed with an identical denominator to model the inter-area 

electromechanical modes with base characteristics listed in Table 2-1. Residues were assigned to 

each mode for each input-output pair to achieve the shapes listed in Table 2-1. As a result, the 

numerators for each transfer function are unique.  

 

 
Figure 2-4: Conceptualization of the simple transfer function model used to generate example data. 

 

 
Table 2-1. List of base electromechanical modes in the model used to generate example data. 

Frequency (Hz) Damping Ratio (%) 
Shape 

Group 1 Group 2 

0.25 7 Areas 1 & 3 Area 2 

0.4 7 Area 1 Area 2 

0.6 6 Area 2 Area 3 
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The model was developed to generate signals that exhibit characteristics observed in power 

system measurements, rather than to properly model the individual components of a power 

system or specific real-world events. Inputs to the system were designed to elicit specific 

oscillation behaviors in the outputs. These inputs will be described in later sections for each of 

the oscillation behaviors that are the focus of this document.  

3. Natural Response Oscillations 
In this section, oscillations related to the natural responses of power systems will be described. 

Their sources, related characteristics, and proper analysis techniques will be discussed. As 

described in Section 2.1, natural response oscillations are those with forms determined by the 

system itself, though ambient- and transient-type natural oscillations are quite distinct in 

appearance. Due to their differences, their characteristics and proper analysis techniques also 

differ. Thus, they will be described separately in Sections 3.1 and 3.2. 

 

3.1. Ambient Response 
The ambient response of a power system can be useful for continuous near-real time monitoring 

or off-line benchmarking of the system’s inter-area electromechanical modes. A variety of 

analysis techniques have been developed to accomplish this task. In the following sections, the 

sources, characteristics, and analysis techniques for ambient responses will be discussed. 

 

3.1.1. Sources of Ambient Responses 
Recall from Section 2.1 that an ambient response is the response of the power system to the 

small random changes within the system. These small changes may include system load, varying 

generation effects, system switching effects, and small disturbances (Pierre, Trudnowski, & 

Donnelly, 1997). Over the span of several minutes, the primary component of the ambient noise 

is driven by random load changes. These random changes act as a constant excitation to the 

electromechanical dynamics of the power system. As a result, they effect the voltage, current, 

power, and frequency measurements produced by PMUs.  

 

As an example, consider the response of the transfer-function model in Figure 2-4 of Section 2.4 

to white noise inputs. The white noise at each of the system’s inputs represents random load 

changes in the system. The top plot in Figure 3-1 is the white noise injected in Area 1, while the 

bottom plot is the ambient noise response from the same area. Note that this response, which is 

the combination of responses from each input, has a significantly different appearance in the 

time domain because it was colored by the model’s dynamics. Still, the system response is not 

obviously oscillatory; it is very noisy in appearance. This, and other characteristics, will be 

discussed in the following section. 
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Figure 3-1: Example white noise input (top) to the example system and resulting ambient noise 

response from the system (bottom). 

3.1.2. Characteristics of Ambient Responses 
Though the output signal in Figure 3-1 is quite different from the input signal, it is not obvious 

how the system’s characteristics are reflected in the response or how the signal constitutes an 

oscillation. Unlike a ringdown, the ambient response is a random process. As such, each set of 

ambient noise appears quite unique in the time domain. However, examination in the frequency 

domain provides a wealth of insight. 

 

The power spectral density (PSD) of the example model’s second output is displayed in Figure 

3-2. The PSD describes how a signal’s power is distributed over frequency. Here, the PSD is 

available because a model is being used. For power system measurements, the PSD can be 

estimated from ambient data using a variety of approaches. Note that the peaks in the PSD 

correspond to the example model’s electromechanical modes. Their frequencies and damping 

ratios are listed in the figure. By centralizing the ambient noise’s frequency content around the 

frequencies of the electromechanical modes, the system dictates the form of the natural ambient 

response.  

 

Under different system conditions, the characteristics of the ambient noise also change. For 

example, consider Figure 3-3, which displays the PSD of the model’s second output after the 

frequency and damping ratio of each of the model’s electromechanical modes was modified. 

Similar changes in the electromechanical modes of real power systems take place when system 

modifications, such as generation redispatch or topology changes occur. Note that the peak 

locations have shifted to the new modal frequencies. The height of each peak is also affected by 

the damping ratios of the modes, with lower damping ratios corresponding to higher peaks. With 

the change in frequency content introduced by an adjustment to the system’s modes, the ambient 
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noise will likewise change. Again it can be emphasized that the system’s natural response takes a 

form associated with the system itself. This characteristic allows the system’s electromechanical 

modes to be estimated using ambient data. 

 

 
Figure 3-2: PSD of the example model’s output signal from Area 2 in the base case. The frequency 

and damping ratio of each of the model’s electromechanical modes are listed next to their 

associated peaks. 

 
Figure 3-3: PSD of the example model’s output signal from Area 2 with changes to the 

electromechanical modes. The frequency and damping ratio of each of the model’s modes are listed 

next to their associated peak. 
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Before discussing analysis techniques, it should be emphasized that analyses can be successfully 

conducted in either the time or frequency domains. It should not be assumed that frequency-

domain approaches are superior because the modes are apparent in the PSD, which again, is a 

theoretical value that must be estimated in practice. Rather, the time- and frequency-domain 

signals are closely coupled, allowing for analysis in either domain. In the following section, both 

varieties of analysis are considered.  

 

3.1.3. Analysis of Ambient Responses 
As discussed previously, random load changes that constantly excite the electromechanical 

dynamics of the power system result in a natural system response of colored ambient noise that is 

captured in PMU measurements. As a result, the ambient noise can be analyzed to estimate the 

electromechanical modes. There are a variety of methods available to do so, and they include 

time-domain, frequency-domain, and subspace approaches. Though useful tools, subspace 

methods will not be discussed in this document due to their complexities. The interested reader is 

directed to (Kamwa & Gerin-lajoie, 2000), (Zhou, Pierre, & Wies, 2003), (Ghasemi, Canizares, 

& Moshref, 2006), and (Jingmin, Chen, & Feng, 2011) for information on these methods. 

 

3.1.3.1. Time-Domain Methods 
Some of the most common time-domain approaches are related to the ARMAX model, which 

was discussed in Section 2.2.2. Repeated from (14), the difference equation describing the model 

is  

 

 𝑦(𝑘) = −∑ 𝑎𝑖𝑦(𝑘 − 𝑖)
𝑛𝑎
𝑖=1 + ∑ 𝑏𝑖𝑢(𝑘 − 𝑖)

𝑛𝑏
𝑖=0 + ∑ 𝑐𝑖𝑒(𝑘 − 𝑖)

𝑛𝑐
𝑖=1 + 𝑒(𝑘).  

 

Some classic approaches to estimating the coefficients of this equation, or its simplifications, are 

the least-squares (LS), Yule-Walker (YW), and maximum likelihood methods (Ljung, 1999). 

Each of these approaches is based on characteristics of the measured signal, 𝑦(𝑘), that can be 

represented with this model. For example, the YW method relies on the autocovariance sequence 

of 𝑦(𝑘), which is defined as  

 

 𝑟(𝑔) = 𝐸{𝑦(𝑘)𝑦(𝑘 − 𝑔)}, (17) 

 

where 𝐸{⋅} denotes the expectation operator. From (14) and (17), it can be shown that the 

autocovariance sequence can be written in terms of the AR coefficients as 

 

 𝑟(𝑔) + ∑ 𝑎𝑖𝑟(𝑔 − 𝑖)
𝑛𝑎
𝑖=1 = 0,     𝑓𝑜𝑟 𝑔 > 𝑛𝑐 (18) 

 

when the deterministic input 𝑢(𝑘) ≡ 0. This equation leads to an approach for estimating the AR 

coefficients, which can then be used to estimate the electromechanical modes, as discussed in 

Section 2.2.2. Here, the details of the YW algorithm are less significant than the general point 

that the ARMAX model captures characteristics of ambient power system data that can be used 

to estimate the electromechanical modes. This is demonstrated in more detail in the following 

example. 

 



21 

 

Example 1: Least-Squares Estimation of the Electromechanical Modes using Ambient 

Data 

In this example, the electromechanical modes of the transfer-function model described in 

Section 2.4 will be estimated by applying the LS algorithm to ambient data generated by 

the model. Instead of the full ARMAX described by (14), the simplified AR model 

described by the difference equation 

 

 𝑦(𝑘) = −∑ 𝑎𝑖𝑦(𝑘 − 𝑖)
𝑛𝑎
𝑖=1 + 𝑒(𝑘) (19) 

 

will be used. Note that due to the lack of a deterministic input, the exogenous (X) portion 

of the ARMAX model is unnecessary, and by using a sufficiently high model order, the 

AR model can be used in place of the full ARMA model. 

 

For 𝑘 = 𝑛𝑎 , 𝑛𝑎 + 1,… , 𝐾, (19) can be written in matrix form as 

 

  [

𝑦(𝑛𝑎 + 1)
𝑦(2)

⋮
𝑦(𝐾)

] = [

𝑦(𝑛𝑎) 𝑦(𝑛𝑎 − 1) ⋯ 𝑦(1)
𝑦(𝑛𝑎 + 1) 𝑦(𝑛𝑎) ⋯ 𝑦(2)

⋮ ⋮ ⋮
𝑦(𝐾 − 1) 𝑦(𝐾 − 2) ⋯ 𝑦(𝐾 − 𝑛𝑎)

] [

𝑎1

𝑎2

⋮
𝑎𝑛𝑎

] + [

𝑒(𝑛𝑎 + 1)
𝑒(2)

⋮
𝑒(𝐾)

] (20) 

or in compact notation as 

 

  𝑦 = 𝑌𝜃 + 𝑒. (21) 

 

Note that 𝑌�̅� should closely match 𝑦. Thus, the estimate of 𝜃, denoted here as 𝜃, should 

be selected to minimize 𝑦 − 𝑌𝜃. Noting that 𝑌 is not square and denoting the matrix 

transpose with a superscript 𝑇, this is accomplished by the LS estimate 

 

 𝜃 = −(𝑌𝑇𝑌)−1𝑌𝑇𝑦. (22) 

 

Though this is an incomplete derivation, it does show how electromechanical mode 

estimates can flow directly from the ARMAX difference equation. 

 

Applying (22) to 10 minutes of data from output channel 2 of the example model with 

𝑛𝑎 = 16 leads to the coefficient estimates 
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 𝜃 = [

�̂�1

�̂�2

⋮
�̂�16

] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−1.1028
0.6040
0.2504
0.0502
0.0673
0.1330
0.1372
0.1585
0.1506
0.0640
0.0830
0.1374
0.0182
0.1147
0.0353
0.0724 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.  

 

Portions of the measured input data 𝑦 and the reconstructed signal 𝑌𝜃 using the estimates 

above are plotted in Figure 3-4. The similarity between the signals indicates a good 

estimation result.  

 

 

Figure 3-4: Input signal 𝒚 and reconstructed signal 𝒀�̂� from the LS method. 

 

Recall that the coefficients estimated above correspond to the polynomial in the 

denominator of the transfer function (1) that models the system. Thus, the roots of the 

polynomial correspond to the poles of the system, which dictate the system’s stability. 

Rooting this polynomial to obtain the discrete-domain poles, transforming to continuous-

time poles via (13), and calculating frequencies and damping ratios as in (4) and (5) leads 
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to the candidates for electromechanical mode estimates listed in Table 3-1. The entries 

listed in bold correspond to the model’s electromechanical modes, and the true values are 

listed in parenthesis. The other pole estimates result from using a model order in excess 

of the true system order to account for noise. 

 

 
Table 3-1. List of continuous-time pole estimates from the application of the LS method to 

ambient data. Those corresponding to the model’s electromechanical modes are bold and 

are followed by the true values in parenthesis. 

Frequency (Hz) Damping Ratio (%) 
Pseudo Energy 

(normalized) 

0.245 (0.25) 6.65 (7) 1.00 

0.401 (0.4) 7.66 (7) 0.96 

1.326 16.08 0.13 

0.604 (0.6) 6.10 (6) 0.11 

0.812 16.37 0.05 

1.103 13.08 0.05 

1.559 8.69 0.02 

1.855 6.42 0.01 

 

Distinguishing between pole estimates that correspond to true modes from those that 

correspond to “noise modes” can be challenging. Note that the estimate with frequency 

0.604 Hz is relatively close to the true system mode with frequency 0.6 Hz and damping 

ratio 6%. The pseudo energy is one tool that is useful in making the distinction. The 

pseudo energy is a measure of a mode’s observability in a set of measurements. Details 

on its calculation from ambient data can be found in (Trudnowski D. J., Pierre, Zhou, 

Hauer, & Parashar, 2008). Because the pseudo energy associated with the 0.604 Hz 

estimate is in the range of the noise modes, it is not listed as a reliable estimate of the true 

mode. Distinguishing between system and noise modes can also be guided by a priori 

information about the system, particularly mode frequency, damping, and shape.  

 

This example demonstrated the use of the LS method to estimate the electromechanical 

modes of a system from ambient data. The AR(MA) model describing how random load 

changes result in colored ambient noise measured by PMUs led to the result. The key is 

that ambient noise, as a natural response of the system, takes a form dictated by the 

dynamics of the system and can therefore be analyzed to reveal information about those 

dynamics, namely, the electromechanical modes. 

∎ 
 

Mode Shape Estimation 
Along with frequency and damping, mode shape can also be estimated by applying time-domain 

approaches to ambient data. Recall from Section 2.2.1 that the mode shape corresponding to 

electromechanical mode (eigenvalue) 𝜆𝑖 with right eigenvector 𝑣𝑖 is given by evaluating the 

magnitude and angle of  
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 𝑀𝑆𝑝𝑅 =
𝑣𝑖,𝑝

𝑣𝑖,𝑅
. (23) 

 

Mode shape is evaluated for several states 𝑝 referenced to state 𝑅. As derived in (Zhou, Huang, 

Dosiek, Trudnowski, & Pierre, 2009), 

 

 𝐺𝑝𝑅(𝜆𝑖) =
𝑣𝑖,𝑝

𝑣𝑖,𝑅
 (24) 

 

where 𝐺𝑝𝑅(𝜆𝑖) is the transfer function from state 𝑅 to state 𝑝. Based on this relationship, the 

paper proposes a general mode shape estimation approach known as the transfer function 

method. To demonstrate this general approach, the paper applies the LS algorithm to identify the 

necessary transfer functions. The Channel Matching Method proposed in (Dosiek L. , Pierre, 

Trudnowski, & Zhou, 2009) is another parametric method for estimating mode shape via transfer 

functions. The method was shown to be a special case of the transfer function method in (Dosiek, 

Zhou, Pierre, Huang, & Trudnowski, 2013). Non-parametric methods that operate in the 

frequency domain will be discussed in the following section. 

3.1.3.2. Frequency-Domain Methods 
So far, the described analysis techniques have operated in the time domain. As discussed in 

Section 3.1.2, characteristics of ambient data related to a system’s electromechanical modes can 

be observed in the frequency domain, making analysis methods based in this domain useful as 

well. 

Spectral Estimation 
One of the most straightforward approaches to analyzing data in the frequency domain is to 

estimate the PSD. Recall from Section 3.1.2 that the PSD is a theoretical value that quantifies 

how a signal’s power is distributed over its frequency band. Ambient power system 

measurements tend to have significant content near the frequencies of the electromechanical 

modes that are observable at that point in the system. For example, all three modes are apparent 

in Figure 3-2 because the model’s second area participates in all three modes (see Table 2-1). In 

Figure 3-5, however, the PSD of the example model’s output from the first area barely contains a 

trace of the 0.6 Hz mode. Recall from Table 2-1 that the 0.6 Hz mode primarily dictates an 

oscillation between areas two and three in the model. The observability of a mode at various 

points in a power system is an important consideration. The shape of the PSD also indicates the 

level of each mode’s damping, though it would be difficult to quantify the damping ratio by 

visual examination of the spectrum. Instead, the observation that spectral peaks narrow as the 

damping of the associated mode decreases provides a subjective measure of a mode’s stability. 

Clearly, examination of the PSD can provide a wealth of information, but in power systems this 

theoretical value is not available, so it must be estimated.  

 

Not all uses of spectral estimates are so subjective. For example, a method of estimating a 

mode’s damping directly from a spectral estimate can be found in (Vanfretti, Bengtsson, Peric, & 

Gjerde, 2012). In (Liu & Venkatasubramanian, 2008), the authors describe how the singular 

value decomposition (SVD) can be applied to spectral estimates as part of an algorithm to 

estimate modal frequency, damping, and shape. Both of these approaches rely on nonparametric 

spectral estimation methods. 
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Figure 3-5: PSD of the example model’s output signal from Area 1 in the base case. Note that the 

0.6 Hz mode is barely observable. See Table 2-1. 

There are two broad categories of spectral estimators: parametric and nonparametric. Parametric 

estimators rely on fitting a model based on measured data, while nonparametric methods 

estimate the PSD directly from the data without using a model. Both of the models discussed in 

this document, the ARMAX and state-space models, can be used for parametric spectral 

estimation. For example, the spectral estimate in Figure 3-6 was generated using the LS 

estimates obtained in Example 1. Further details are not provided here, but the fundamental 

concept is that by modeling the way that inputs combine to form an output, models are also able 

to capture how the frequency content of each input is manipulated to dictate the frequency 

content of an output. 
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Figure 3-6: PSD and least-squares spectral estimate for measurements from the example model’s 

second area. 

 

Nonparametric methods rely on transforming time domain signals into the frequency domain, 

often using the discrete Fourier transform (DFT). Generally, outputs of the DFT are complex and 

correspond to a frequency bin between zero and half of the time-domain signal’s sampling rate. 

Perhaps the simplest spectral estimator is the periodogram, which is simply 

 

 �̂�(𝑓) =
1

𝐾
|𝐷𝐹𝑇{𝑦(𝑘)}|2 (25) 

 

where 𝑓 is a frequency variable and 𝐾 is the signal length. The periodogram is a poor spectral 

estimator due to its variance, but this variance can be reduced using a variety of refined methods. 

One of the most common refined estimators, the Welch periodogram, is considered in the 

following example. 

 

Example 2: Nonparametric Spectral Estimation of Ambient Data 

The 10 minutes of Area 2 data from Example 1 is considered again in this example. To 

begin, the periodogram is obtained using a computationally efficient method of 

calculating the DFT. Any such method is known as a fast Fourier transform (FFT). Note 

that the FFT of the data is complex and cannot be considered an estimator of the PSD, 

though it is often misidentified as such. The periodogram of the data, calculated as in 

(25), is displayed in Figure 3-7 along with the PSD. Note that the estimate has significant 

variance, despite the long record length. 
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Figure 3-7: Periodogram and PSD of output data from the second area of the example 

model. 

Though many methods of refining the periodogram in Figure 3-7 are available, one of the 

most common is the Welch periodogram. In Welch’s method, the dataset is broken into 

overlapping segments. A window is applied to each segment before calculating the 

periodogram. Finally, the periodograms from each segment are averaged to obtain the 

final estimate. The Welch periodogram in Figure 3-8 was calculated using 1-minute 

segments with 30 seconds of overlap. The significant reduction in variance compared 

with the simple periodogram in Figure 3-7 makes the Welch periodogram and other 

refined periodogram methods useful spectral estimators in practical applications.  

 

 
Figure 3-8: Welch periodogram and PSD of output data from the second area of the 

example model. 

∎ 
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Refined nonparametric spectral estimates such as the one in Figure 3-8 can be used for 
more than just subjective evaluations of modes. For example, a method of estimating a 

mode’s damping directly from a spectral estimate based on the width of the associated peak can 

be found in (Vanfretti, Bengtsson, Peric, & Gjerde, 2012). In (Liu & Venkatasubramanian, 

2008), the authors describe how the singular value decomposition (SVD) can be applied to 

spectral estimates as part of the Frequency Domain Decomposition (FDD) algorithm to estimate 

modal frequency, damping, and shape. The following section describes other characteristics of 

modes that can be evaluated with frequency-domain approaches. 

Spectral Coherence Estimation 
Spectral estimation is perhaps the most fundamental approach to analyzing ambient data in the 

frequency domain, but it is not the only one. Another useful tool is the spectral coherence, which 

is also commonly referred to as the magnitude squared coherence. The spectral coherence is a 

frequency-dependent measure varying between zero and one to indicate how linearly related two 

signals are. It can be estimated by applying Welch’s method of averaging. For each segment in 

the average, the term 

 

 �̂�𝑦𝑧(𝑓) =
|�̂�𝑦𝑧(𝑓)|

2

�̂�𝑦𝑦(𝑓)�̂�𝑧𝑧(𝑓)
 (26) 

 

is calculated, where �̂�𝑦𝑧(𝑓) is a generalization of (25) such that 

 

 �̂�𝑦𝑧(𝑓) =
1

𝐾
× 𝐷𝐹𝑇{𝑦(𝑘)} × 𝐷𝐹𝑇{𝑧(𝑘)}∗. (27) 

 

Here the superscript ∗ denotes the complex conjugate. The usefulness of the spectral coherence is 

explored in the following example. 

 

Example 3: Use of the Spectral Coherence Estimate to Distinguish Between 

Electromechanical Modes 

In this example, the attributes of the example model listed in Table 2-1 have been 

modified. With these new attributes, the PSDs for each output channel were estimated by 

applying Welch’s method to 10 minutes of data. The estimates are plotted in Figure 3-9. 

In each of the three signals, frequency content is apparent near 0.25 Hz and near 0.5 Hz. 

Without further information, it would be reasonable to conclude that the system has two 

dominant electromechanical modes that are observable in all three areas.  

 

Examination of the estimate of the spectral coherence between outputs 1 and 3 in Figure 

3-10 helps to reveal the truth. Note that the coherence is large near 0.25 Hz, but it is 

significantly smaller near 0.5 Hz. This result indicates that the 0.25 Hz mode is common 

to both areas, but the apparent 0.5 Hz mode in Figure 3-9 is not. The true modes are listed 

in Table 3-2. Note that the number of modes and mode shapes are identical to the base 

case for the model; only the frequencies of two modes were changed. As demonstrated in 

this example, estimates of the spectral coherence can be powerful tools in distinguishing 

between electromechanical modes with similar frequencies.  
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Figure 3-9: Estimates of the PSD for each of the output channels from the modified example 

model. 

 

 
Figure 3-10: Estimate of the spectral coherence between the modified model’s first and 

third outputs. Note the lack of a peak near 0.5 Hz. 
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Table 3-2. List of electromechanical modes in the modified model used to generate data for 

Example 3. 

Frequency 

(Hz) 
Damping Ratio (%) 

Shape 

Group 1 Group 2 

0.25 7 Areas 1 & 3 Area 2 

0.5 7 Area 1 Area 2 

0.49 6 Area 2 Area 3 

 

∎ 
 

In practical situations, it is important to distinguish between electromechanical modes, as in 

Example 3. Some methods of estimating the electromechanical modes perform better when 

channels with high observability of a specific mode or set of modes are selected for analysis. The 

estimation problem is made much more difficult when channels with high observability of modes 

at similar frequencies are included. Clearly distinguishing between a system’s modes is also 

important for the next topic, estimation of mode shape using ambient data. 

Mode Shape Estimation  
Frequency-domain methods for mode shape estimation include the spectral method (Trudnowski 

D. , 2008) and the Frequency Domain Decomposition (FDD) method (Liu & 

Venkatasubramanian, 2008). These methods utilize the non-parametric spectral and spectral 

coherence estimation methods described in the previous subsections. As demonstrated in 

(Dosiek, Zhou, Pierre, Huang, & Trudnowski, 2013), the methods are both special cases of the 

transfer function method (Zhou, Huang, Dosiek, Trudnowski, & Pierre, 2009). Because of its 

similarities to previous examples, the spectral method will be considered in the following 

example.   

 

Example 4: Mode Shape Estimation with the Spectral Method 

In the example model described in Section 2.4, areas one and three oscillate against area 

two as dictated by the 0.25 Hz mode. Estimating the shape of this mode with the spectral 

method described in (Trudnowski D. , 2008) is the focus of this example. Let �̂�𝑖𝑙(𝑓) 

denote the estimates of the PSD (for 𝑖 = 𝑙) and the cross power spectral density (for 𝑖 ≠
𝑙) generated by applying Welch’s method to (27). In (Trudnowski D. , 2008), the 

assumption that 𝜆 = 𝜎 + 𝑗𝜔 can be approximated as 𝑗𝜔, i.e., the mode of interest has low 

damping, leads to an estimator for the transfer function in (24). Recalling from Section 

2.2.1 that 𝑓 =
𝜔

2𝜋
, the mode shape magnitude estimate for output 𝑝 is 

 

 |𝑀�̂�𝑝| =
�̂�𝑝𝑝(𝑓)

�̂�𝑅𝑅(𝑓)
 (28) 

 

and the mode shape angle estimate for output 𝑝 is 

 

 ∠𝑀�̂�𝑝 = ∠�̂�𝑅𝑝(𝑓). (29) 
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Because �̂�𝑝𝑝(0.25) is largest for output two, it is selected as the reference output, i.e., 

𝑅 = 2. Results from the application of (28) and (29) to the 10 minutes of ambient data 

used in previous examples for these selections are plotted in Figure 3-11. From the plot, it 

is clear that area 2 participates most heavily in the oscillation and oscillates against areas 

1 and 3. This result reflects the mode shape listed in Table 2-1. 

 
Figure 3-11: Spectral method mode shape estimates based on ambient data from the 

example model. 

Before concluding this example, a comment about the practical implementation of the 

method must be made. Note that the equations for the spectral mode shape estimator 

given by (28) and (29) are based on system measurements, but mode shape is defined for 

power system states that are not measured by PMUs, e.g., generator shaft speed. 

Measurement-based mode shape estimators often rely on the assumption that only 

measurements collected near generator terminals and consequently dominated by a 

system state are used in the analysis.  

∎ 

3.2. Transient Response 
Power system transient responses fall within the larger class of natural oscillations. Though 

sharing this categorization with ambient noise, their appearance in time-domain data is 

significantly different, as is demonstrated in Figure 3-12 using the example model. As a result, 

techniques specific to their analysis have been developed. Transient responses were studied 

before ambient noise, and there is a wealth of literature published on the topic. In this section, the 

sources, characteristics, and proper analysis techniques associated with transient responses will 

be described.  
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Figure 3-12: Ambient and transient data from the example model. 

 

3.2.1. Sources of Transient Responses 
In contrast to a power system’s ambient response, which is constantly present due to random 

low-level system disturbances, transient responses are initiated by system events and die out over 

short time intervals. The scale and type of the event can vary significantly. For example, faults 

and trips on transmission lines, the sudden loss of generation, and load tripping can all cause 

transients visible at the transmission level of a power system. When these events occur, they act 

as a large, sudden excitation to the system. The transient response describes how the system 

settles back to a steady state condition following such an excitation.  

 

To understand how events impact the system and how the resulting transient responses can be 

analyzed, it is helpful to describe these events as system inputs. As an example, consider an 

unscheduled generator trip. Because this constitutes a sudden, large, and long-lasting change, it 

can be thought of and modeled as a step change. Though the example model described in Section 

2.4 is not detailed enough to model a generator trip, application of a step change does result in a 

response similar to those observed in power systems following a generator trip, as can be seen in 

Figure 3-13. Note that the input also contains a random component that results in ambient noise. 

As a second example, consider a lightning-induced fault on a transmission line that is cleared 

after a single operation of a recloser. This event can be thought of and modeled as an impulse 

because it impacts the system for a short time and afterward the system returns to the conditions 

that existed before the fault. The impulse input and resulting output of the example model are 

plotted in Figure 3-14. 
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Figure 3-13: Response of the example system’s third output to a step change at input 3. 

 

 
Figure 3-14: Response of the example system’s third output to an impulse at input 3. 

 

Whether the event is better characterized as a step change or an impulse, the resulting 

“ringdowns” in Figure 3-13 and Figure 3-14 are characteristic of transient responses. One 

component of this response reflects the input and one component reflects the system (Kamen & 

Heck, 2007). In power systems, as is generally true with other systems, it is the oscillatory 

behavior apparent in a ringdown resulting from a step or impulse input that is associated with the 

characteristics of the system. This relationship makes it possible to determine information about 

the power system by analyzing ringdowns. Before discussing analysis techniques, the 

characteristics of transient responses and their relation to the system’s characteristics will be 

described in the following section.  

 

3.2.2. Characteristics of Transient Responses 
The transient responses depicted in Figure 3-13 and Figure 3-14 can be characterized in 

continuous time as a sum of damped sinusoids, i.e., 

 

 𝑦(𝑡) = ∑ 2𝑒𝜎𝑚𝑡|𝐶𝑚| cos(𝜔𝑚𝑡 + ∠𝐶𝑚)𝑀
𝑚=1  (30) 

 

where 𝑀 is the number of dominant inter-area electromechanical modes and the 𝐶𝑚 are complex 

valued scalars known as residues. As before, 𝜆𝑚 = 𝜎𝑚 + 𝑗𝜔𝑚 is a continuous-time eigenvalue 

corresponding to a dominant electromechanical mode. A single term in (30) corresponding to the 

0.4 Hz mode in the example model is plotted in Figure 3-15 for 𝐶𝑚 = 1. The frequency of the 
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sinusoid (gray) and damped sinusoid (black) are equal to the mode’s frequency of 0.4 Hz. The 

decay of the damped sinusoid’s amplitude is driven by the exponential, particularly 𝜎𝑚. The 

decay will occur quickly for 𝜎𝑚 ≪ 0, i.e., when the mode is very stable, and slowly as 𝜎𝑚 

approaches 0. When 𝜎𝑚 equals 0, the exponential term becomes unity and the undamped 

sinusoid (gray in Figure 3-15) will be present in the transient response. If 𝜎𝑚 is greater than 0, 

the system is unstable and the oscillation will grow without bound as depicted in Figure 3-16.  

 

 
Figure 3-15: Transient response term for 𝝈𝒎 = −𝟎.𝟏𝟕𝟔, which leads to a damping ratio of 7%. In 

regard to this mode, the system is stable. 

 
Figure 3-16: Transient response term for 𝝈𝒎 = 𝟎. 𝟏𝟕𝟔, which leads to a damping ratio of -7% and 

unstable system conditions. 
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As is clear from (30), the residue term 𝐶𝑚 dictates the amplitude and phasing for each damped 

sinusoid. Whereas 𝜆𝑚 is identical for a mode no matter where a measurement is taken, the 

residue for each mode varies throughout the system. At measurement locations where the mode 

is highly observable, the residue will be large. The residue’s angle will be similar for areas 

swinging together and nearly 180° apart for areas swinging against each other. Thus, a mode’s 

residues are closely related to its shape. The fact that the parameters of the system’s dominant 

modes dictate the form of the transient response leads to the analysis methods described in the 

following section. 

 

3.2.3. Analysis of Transient Responses 
After a significant event disturbs the power system, the system’s return to steady state is dictated 

by the transient response. Typically characterized as a natural response, the form of a transient 

response reflects the system’s electromechanical dynamics. Thus, the transient response can be 

analyzed to estimate the properties of the system’s electromechanical modes. Due to the large 

signal-to-noise ratio afforded by significant transient responses, analysis methods properly 

applied to ringdowns tend to provide more accurate estimates than their ambient analysis 

counterparts. 

 

There are two general approaches specific to analyzing power system transients to obtain 

estimates of the electromechanical modes. One of these approaches is to fit a low-order state-

space model based on the measured ringdown. Examples of this approach are the Minimal 

Realization Algorithm (Kamwa, Grondin, Dickinson, & Fortin, 1993) and the Eigensystem 

Realization Algorithm (Sanchez-Gasca & Chow, 1997). The alternative approach is to fit a sum 

of sinusoidal, or equivalent exponential, terms to the response described by (30). Methods that 

fall into this category include the Prony (Hauer, Demeure, & Scharf, 1990) (Trudnowski, 

Johnson, & Hauer, 1999), Matrix Pencil (Liu, Quintero, & Venkatasubramanian, 2007), Hankel 

Total Least Squares (Liu, Quintero, & Venkatasubramanian, 2007), and Variable Projection 

(Borden, Lesieutre, & Gronquist, 2013) algorithms. Before examining this approach further, it 

should also be mentioned that some ambient analysis techniques can be successfully applied to 

ringdown data, an important quality in practical applications where continuous monitoring is 

desired. However, the opposite is generally not true. Algorithms specific to transient responses 

will not provide accurate results when applied to ambient data because ambient data cannot be 

well described by (30).  

 

Example 5: Analysis of a Transient Response with Prony’s Method 

In this example, Prony’s method is used to estimate the modes of the example model by 

analyzing ringdowns in the model’s outputs. The transient response is initiated by a half-

second pulse applied to input 2 to reflect the insertion of the Chief Joseph dynamic brake 

in the western North American Power System (wNAPS) for testing purposes. As can be 

seen in Figure 3-17, the pulse resulted in transients in each of the model’s outputs.  

 

Selecting a proper window of data for analysis is important for all methods applied to 

transients. There are two primary considerations: 1) linearity of the system and 2) SNR of 

the measurements. Everything discussed in this section assumes that the system 

generating the transient response exhibits linear behavior. Though power systems are in 

reality nonlinear systems, they tend to behave linearly about an operating point. When the 



36 

 

operating point changes dramatically, as happens during a system event, the initial 

portion of the response cannot be characterized as linear. Thus, a good rule of thumb is to 

exclude the first two swings of the response if the transient is large. For the second 

consideration, it is important to remember that transient analysis methods are applicable 

to signals composed of a sum of sinusoids. Thus, it is important to include only portions 

of data where the transient response is dominant. The window used for analysis is 

highlighted in black for output 2 in Figure 3-18. 

 

Results from the analysis of the ringdowns in Figure 3-17 with the multi-channel Prony 

method described in (Trudnowski, Johnson, & Hauer, 1999) with a model order of 12 are 

listed in Table 3-3 and Table 3-4. Mode estimates corresponding to true modes are listed 

in bold with true values in parenthesis. The mode shape estimates in Table 3-4 are 

obtained by normalizing estimates of the residues. Comparison with Table 2-1 indicates 

that, for a given mode, outputs with large mode shape magnitudes are strong participants 

in the mode and those with opposing mode shape angles swing against each other.  

 

 
Figure 3-17: Inputs to the example model and the resulting transient responses apparent in 

the model’s outputs. 
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Figure 3-18: Portion of data from output 2 used for analysis (black). 

 
Table 3-3. Mode estimate results from application of Prony’s method to modeled data. 

Estimates corresponding to true modes are listed in bold with true values in parenthesis. 

Frequency (Hz) Damping Ratio (%) 
Pseudo-Energy 

(Normalized) 

0.250 (0.25) 6.578 (7) 1.000 

0.403 (0.4) 7.066 (7) 0.564 

0.597 (0.6) 5.643 (6) 0.166 

1.843 6.505 0.5029×10-4 

1.037 4.982 0.2723×10-4 

1.475 4.892 0.0482×10-4 

 

 
Table 3-4. Mode shape estimates from application of Prony’s method to modeled data. 

Estimates corresponding to true modes are listed in bold. All estimates have been 

normalized using output 2 as reference. 

Output 1 Output 2 Output 3 

0.50 ∠ 174.2° 1.00 ∠ 0.0° 0.70 ∠ -165.9° 

0.90 ∠ 174.5° 1.00 ∠ 0.0° 0.25 ∠ -163.7° 

0.33 ∠ 117.8° 1.00 ∠ 0.0° 0.72 ∠ 168.2° 

0.66 ∠ 142.6° 1.00 ∠ 0.0° 0.42 ∠ -127.8° 

0.35 ∠ 118.0° 1.00 ∠ 0.0° 0.40 ∠ 156.6° 

0.17 ∠ 132.8° 1.00 ∠ 0.0° 0.75 ∠ -160.6° 
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The pseudo-energy listed in Table 3-3 is a metric for how much each estimated mode 

contributes to the input signals. Recall from (30) that transients are modeled as sums of 

damped sinusoids. The six damped sinusoids for output 2 corresponding to the mode 

estimates in Table 3-3 are plotted in Figure 3-19. The sum of these damped sinusoids 

leads to the modeled signal depicted in Figure 3-20. Good agreement between the 

measured and modeled signals is an indicator that the model is capturing the dominant 

modes at the measurement location.  

 

In Figure 3-19, note that the three damped sinusoids corresponding to the true modes are 

much larger than the others and thus contribute more to the transient. The pseudo-energy 

for the 𝑚𝑡ℎ mode estimate is given by 

 

 𝐸𝑚 = ∑ ∑ |�̂�𝑟,𝑚(𝑘)|
2𝑘2

𝑘=𝑘1

𝑅
𝑟=1  (31) 

 

where 𝑅 is the number of channels, the indices of the analyzed portion of the signal are 

given by 𝑘1 ≤ 𝑘 ≤ 𝑘2, and �̂�𝑟,𝑚(𝑘) denotes the damped sinusoid associated with the 𝑚𝑡ℎ 

mode estimate for channel 𝑟. The small values for pseudo-energy given in Table 3-3 for 

the final three entries indicate that those mode estimates do not correspond to the 

system’s dominant electromechanical modes. Still, their inclusion improves the 

estimation by capturing noise terms and higher frequency components.  

 
Figure 3-19: Estimated contribution of the damped sinusoids associated with each mode in 

Table 3-3 to the transient in output 2. 
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Figure 3-20: The signal used for analysis (black) and the modeled signal based on the mode 

estimates (red) for output 2. 

As mentioned previously, the strong agreement between the measured and modeled 

signals in Figure 3-20 is an indicator that the dominant modes are being captured. 

However, caution must be taken. By increasing the model order to 22, a slightly better fit 

can be achieved and the estimates in Table 3-5 are obtained. Note that the estimates in 

bold are both near the frequency of a system mode. Though the pseudo-energy of the 

0.282 Hz component is much smaller, it still contributes significantly to the modeled 

signal, as can be seen in Figure 3-21. This occurrence is known as mode splitting. It 

occurs when the selected model order is too high, causing the contribution from a true 

electromechanical mode to be split between two estimated modes. For this reason, it is 

good practice to select the smallest model order that provides a sufficiently good fit 

between measured and modeled data by capturing the contributions of each dominant 

mode.  
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Table 3-5. Mode estimate results from application of Prony’s method to modeled data with 

a high model order of 22. The “split mode” estimates are highlighted in bold font. 

Frequency (Hz) Damping Ratio (%) 
Pseudo-Energy 

(Normalized) 

0.249 7.689 1.000 

0.398 6.778 0.492 

0.598 4.800 0.125 

0.282 14.019 0.034 

1.149 10.016 0.857×10-3 

1.262 12.522 0.569×10-3 

0.964 8.389 0.396×10-3 

0.780 4.604 0.043×10-3 

1.918 2.209 0.012×10-3 

1.476 2.365 0.006×10-3 

1.681 2.132 0.002×10-3 

 

 
Figure 3-21:  Estimated contribution of the damped sinusoids from the split mode listed in 

Table 3-5 to the transient in output 2. 

∎ 
 



41 

 

4. Forced Response Oscillations 
Recall that system responses can be characterized by natural and forced components. Natural 

components often used in modal analysis were discussed in Section 3. In this section, the sources 

and characteristics of forced responses, along with analysis approaches, are described. The 

distinction between natural and forced oscillations is an important one. The proper response of 

power system engineers and operators to a forced oscillation is different than that of a modal 

oscillation. Further, using analyses meant for one type of oscillation on the other can be 

misleading. To understand why, the sources of forced oscillations must be examined.  

 

4.1. Sources of Forced Responses 
Forced oscillations have a wide variety of sources spanning cyclic loads, equipment, and 

thermal-, hydro-, diesel-, and renewable-generation plants. Despite this tremendous variety, these 

components can impact the system in similar ways that lead to forced oscillations. Specifically, 

they are able to introduce periodic disturbances to the system that can, under certain 

circumstances, be observed across the system.  

 

It should be noted that the discussion in this document is limited to “true” forced oscillations and 

does not extend to limit cycles associated with Hopf bifurcations. Though sustained oscillations 

associated with limit cycles can display similar characteristics as forced oscillations, their 

existence is tied to system dynamics and stability in a way that forced oscillations are not. The 

distinction between these types of oscillations is recognized in (Wang & Turitsyn, 2016) and 

(Xie & Trudnowski, 2015). For details on oscillations related to limit cycles and Hopf 

bifurcations see (Wang & Turitsyn, 2016) and the references therein. This document is also 

limited to forced oscillations with distinct periods because methods for analyzing and modeling 

forced oscillations driven by a narrowband input, e.g., a hydro-generating unit running in the 

rough zone, are not yet well established.  

 

As mentioned previously, forced oscillations can be introduced by cyclic loads, equipment, or 

generation plants. Examples of cyclic loads include nuclear accelerators (Pinneilo & Van Ness, 

1971), steel plans, cement mills, and aluminum processing plants (Rao & Jenkins, 1988). While 

cyclic loads tend to introduce oscillations while operating properly, equipment and generating 

units that produce unintentional oscillations tend to do so because of a malfunction in control or 

a physical component (Myers & Trudnowski, 2013) (Silverstein, 2015). The oscillations 

resulting from such malfunctions can be viewed as periodic system inputs with a variety of 

waveforms, e.g., sawtooth, pulse train. This periodic nature is preserved in forced oscillations as 

they pass through the system and are measured at system outputs. Because these outputs reflect 

the characteristics of an input rather than the system, they are part of the system’s forced 

response. Further details are provided in the following section. 

 

4.2. Characteristics of Forced Responses 
Due to the variety of forced oscillation sources, the characteristics of these oscillations can vary 

greatly. Some forced oscillations are large enough to be apparent in time domain measurements, 

while others would go unnoticed in PMU measurements without careful examination. An 

example of a real-world forced oscillation that, after preprocessing, is apparent in time-domain 

data is presented in Figure 4-1. Similar examples can be found in (Silverstein, 2015), 
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(Trudnowski D. , Pierre, Donnelly, & Venkatasubramanian, 2015), and (Myers & Trudnowski, 

2013). In this section, the characteristics that are common to the wide range of forced oscillations 

are discussed.  

 

To describe the characteristics of forced oscillations as they are observed in measurements, it is 

helpful to begin with the inputs that create them. Due to the periodic nature of these inputs, they 

can be expressed with the Fourier series as 

 

 𝑢(𝑡) = 𝛼0 + ∑ 𝛼ℎ cos(ℎ𝜔0𝑡 + 𝜃ℎ)∞
ℎ=1  (32) 

 

where 𝜔0 is the fundamental frequency with units of radians per second (Kamen & Heck, 2007). 

Each term in the sum is a harmonic. This expression is quite general in that 𝑢(𝑡) can be any 

periodic waveform, e.g., pulse train, sawtooth, or multisine. For the reasons described next, 

forced oscillations often do not reflect this waveform when measured at a system output. 

 

 
Figure 4-1: Real-world example of a forced oscillation apparent in time-domain PMU data. 

 

Forced oscillations do not arise because of the system’s dynamics, but they are influenced by 

them. Letting 𝐺𝑖(𝜔) denote the transfer function between the forced oscillation’s input and the 

output 𝑖, the component of the measured output corresponding to the forced oscillation can be 

expressed as  

 

 𝑦𝑖,𝑢(𝑡) = 𝐺𝑖(0)𝛼0 + ∑ |𝐺𝑖(ℎ𝜔0)|𝛼ℎ cos(ℎ𝜔0𝑡 + 𝜃ℎ + ∠𝐺𝑖(ℎ𝜔0))
∞
ℎ=1 . (33) 

 

Note that the amplitude of each harmonic component is scaled in amplitude and shifted in phase 

based on the transfer function. As a result of this scaling and shifting, the measured output will 

generally not have the same time-domain appearance as the input. However, it does have the 

same frequency components. The presence of harmonics is a strong indicator that a power 
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system oscillation is forced, rather than natural. These characteristics are illustrated in the 

following example.  

 

Example 6: Effect of System Dynamics on a Forced Oscillation’s Characteristics 

For this example, a square wave with unit amplitude was added to the example model’s 

third area to induce a forced oscillation. The first several Fourier series coefficients for 

this square wave are given in Figure 4-2 as a function of harmonic frequency. Note that 

all coefficients for even harmonics are equal to zero. 

 

 
Figure 4-2: Fourier series coefficients of the 0.2 Hz square wave input to the example 

model’s third area to induce a forced oscillation. 

The forced oscillation that results from the square wave input can be seen in all three of 

the model’s outputs, but here the output from area 2 is considered. The frequency 

response of the system from input 3 to output 2 is plotted in Figure 4-3. Values at 

frequencies corresponding to the odd harmonics of the input square wave are indicated in 

the plot. When the square wave passes through the system from input 3 to output 2, a 

gain and phase shift are applied to each of the frequency components in Figure 4-2. 

Recall that these coefficients correspond to the sinusoids in (32). The first several Fourier 

series coefficients for the forced oscillation portion of output 2 that result from the gain 

and phase shift are depicted in Figure 4-4. Note that due to the large gain at 0.6 Hz (see 

Figure 4-3), the largest Fourier series coefficient in the output corresponds to the third 

harmonic.  
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Figure 4-3: Frequency response of the example system from input 3 to output 2. 

 

 

 
Figure 4-4: Fourier series coefficients for the forced oscillation portion of output 2. 
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The gain and phase shifts dramatically impact the shape of the forced oscillation as it 

appears in output 2, as is apparent in Figure 4-5. In the figure, the waveform could clearly 

be described as a sum of sinusoids. When output 2, including both the forced oscillation 

and ambient noise portions, is analyzed in the frequency domain, the component 

sinusoids are apparent. The spectral estimate in Figure 4-6 was obtained by applying a 

Welch periodogram to the output from area 2. Along with the ambient noise spectrum, 

line spectra, which are indicative of sinusoidal signal components, are apparent at the odd 

harmonics of 0.2 Hz. These are the exact same frequency components in the input signal 

(see Figure 4-2). The spectral estimate in Figure 4-6 is reflective of those obtained from 

actual PMU data. As a forced response of the system, the forced oscillation measured at 

the system’s output retains the characteristics, in this case the frequency components, of 

the input that induced it. For this reason, the presence of harmonics is a strong indicator 

that an observed oscillation is forced, rather than natural. The harmonics that are present, 

along with the extent to which they are present, depend on the input’s particular 

waveform and the gain between the input and the measured output. 

 

 
Figure 4-5: Forced oscillation portion of the output from the test model’s second area. 
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Figure 4-6: Welch periodogram of the output from the test model's second area. Peaks 

corresponding to forced oscillation frequencies are apparent at odd harmonics of the input 

oscillation’s 0.2 Hz fundamental frequency. 

∎ 
 

While the harmonic content of forced oscillations displayed in the previous example clearly 

distinguishes them from natural oscillations, other differences are more subtle. For example, it is 

an important characteristic of forced oscillations that they do not exhibit damping the way 

natural oscillations do. Note that the description of a transient response in (30) contains the term 

𝑒𝜎𝑡, but the description of a forced oscillation response in (33) does not. Though not conclusive, 

the undamped characteristic of forced oscillations can help identify them because undamped 

natural oscillations are rare. 

 

Because forced oscillations tend to be undamped, it can lead to confusion to assign a damping 

value to an observed forced oscillation. As was discussed in Section 3, the damping of natural 

oscillations is directly tied to the system’s stability. Forced oscillations, though, do not inherit 

their undamped characteristic from the system, but rather from the driving input. Thus, care must 

be taken when discussing forced oscillations to clearly distinguish between their damping of zero 

and the damping of system modes, the two of which are unrelated. Further, estimating the 

damping ratio of a forced oscillation can be viewed as analogous to fitting linear data to the 

model 

 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. 

 

The quadratic coefficient being very near zero indicates that the data is truly linear, but the value 

itself has little meaning because it is an unnecessary addition to the model. Similarly, a very 

small damping ratio estimate for an oscillation may indicate that it is forced, but once the 
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oscillation is known to be forced reporting a specific value for the damping provides little if any 

information. It should be noted that though forced oscillations are undamped, they may have 

amplitudes that vary with time due to changes in the driving input. In most cases, this variation 

cannot be well described using a damping term. 

 

The amplitude and phase of a forced oscillation also vary geographically or, perhaps more 

accurately, topologically. Oscillations can travel great distances across transmission lines and 

through transformers. The gain and phase shift applied to a forced oscillation as it passes through 

the system are dependent on the path that it travels. As a result, PMU measurements of a forced 

oscillation from different points in the system will have differing amplitudes and phases. An 

oscillation’s variation across a system is often described by its shape.  

 

In (Trudnowski D. , Pierre, Donnelly, & Venkatasubramanian, 2015), oscillation shape is defined 

as: 

 

…the relative perception of an oscillation at different parts of a power grid.  An Oscillation 

Shape is characterized by the amplitude and phase of a particular frequency component 

within an oscillation.  The Oscillation Shape is unique to the measurement point within the 

system.   

 

Note that this general definition is based entirely on the observation of an oscillation. When more 

specifically discussing oscillatory mode shape, the authors of (Trudnowski D. , Pierre, Donnelly, 

& Venkatasubramanian, 2015) point out that the mode shape is mathematically characterized by 

the right eigenvector of the system’s state matrix (see Section 2.2.1). Thus, mode shape is a 

property of the system. A forced oscillation’s shape is determined in part by the gain and phase 

shift applied by the dynamics of the system, but it is not a characteristic of the system itself. 

Thus, the general definition above, which focuses on the relative perception of an oscillation 

throughout the system, is appropriate for the discussion of a forced oscillation’s shape. Examples 

of a forced oscillation’s shape are provided in the following example.  

 

Example 7: Forced Oscillation Shape 

In this example, a sinusoidal forced oscillation with unit amplitude is applied at the inputs 

of the example model. Time-domain plots include only the portion of the response related 

to the forced oscillation, i.e., ambient noise is excluded for clarity. The associated 

oscillation shape plots have been normalized so that the channel with the largest 

amplitude is the reference with unit magnitude and zero phase. Normalization is common 

in practical applications because the relative shape of the oscillation at various points 

throughout the power system is of interest.  

 

First, a 0.2 Hz sinusoid is applied to the input of the model’s second area. The forced 

oscillation component of the response at each of the model’s output is plotted in Figure 

4-7 and the shape is plotted in Figure 4-8. Note that the relative amplitudes and phasing 

apparent in the time-domain plot are apparent in the shape plot. 
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Figure 4-7: Forced oscillation components of the example model outputs in response to a 0.2 

Hz sinusoid injected at the model’s second input. 

 

 
Figure 4-8: Shape of a 0.2 Hz forced oscillation injected at the model’s second input. 
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Next, the same 0.2 Hz sinusoid was applied to the input of the model’s third area. The 

results in Figure 4-9 and Figure 4-10 demonstrate the significant difference in shape that 

occurs when the input is changed. Likewise, changing the frequency of the input sinusoid 

to 0.5 Hz leads to a dramatic change in oscillation shape, as depicted in Figure 4-11 and 

Figure 4-12. In both cases, the shape changes because the system dynamics, which are 

represented by the model’s transfer functions, differ depending on the input location and 

frequency of the input.  

 

 
Figure 4-9: Forced oscillation components of the example model outputs in response to a 0.2 

Hz sinusoid injected at the model’s third input. 
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Figure 4-10: Shape of a 0.2 Hz forced oscillation injected at the model’s third input. 

 

 
Figure 4-11: Forced oscillation components of the example model outputs in response to a 

0.4 Hz sinusoid injected at the model’s third input. 
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Figure 4-12: Shape of a 0.4 Hz forced oscillation injected at the model’s third input. 

∎ 
 

As a consequence of the behavior demonstrated in the previous example, the information 

provided by a forced oscillation’s shape is, in some ways, limited. In particular, Figure 4-9 and 

Figure 4-10 demonstrate that the oscillation need not be largest in the area it was injected. This 

behavior has been observed in actual power systems, where a small oscillation injected in one 

part of the system was observed with significant amplitude in a distant part of the system. 

Though it is certainly common for a forced oscillation to be largest near its source, it should not 

be assumed that this is always the case when analyzing measured data.  

 

4.3. Analysis of Forced Responses 
The analysis of forced oscillations can generally be broken down into the categories of detection 

and identification. Detection is necessary because, unlike ambient oscillations, each forced 

oscillation is only present as long as its driving input is active. Once detected, the parameters of 

the oscillation, including frequency, amplitude, and phase can be identified. Finally, identifying 

the source of the oscillation, though often challenging, makes it possible to correct the improper 

operation leading to the oscillation. In the following two subsections, the aspects of detection and 

identification of forced oscillations will be discussed. 

 

4.3.1. Detection of Forced Oscillations 
Before a forced oscillation can be analyzed or addressed, it must be detected. To do this 

practically, automated detection methods are needed. These methods can be split into general 
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categories based on 1) an increase in signal energy, 2) an increase in coherence, and 3) 

identification of sustained oscillations. These three categories are described in this section, but 

first performance measures common to all detection algorithms are discussed. 

 

Before proceeding, it should be noted that distinguishing between forced oscillations and 

sustained, i.e., zero-damped, natural oscillations is a challenge for all methods. In some 

approaches, the detection algorithm is designed specifically for forced oscillations, while in other 

cases the determination is made after detection. At present, few analytical methods for 

distinguishing between forced and natural oscillations have been proposed, so they are not 

discussed here. The interested reader is referred to (Xie & Trudnowski, 2015) and (Wang & 

Turitsyn, 2016). Discussion in this section will focus on the overwhelmingly most common case 

where a sustained oscillation appearing in PMU data is due to a forced, rather than natural, 

response of the system. 

4.3.1.1. Performance Measures for Oscillation Detection 
The primary challenge in detecting forced oscillations is achieving an acceptable balance in a 

method’s performance. The performance of detectors can be evaluated by considering how often 

the four scenarios in Figure 4-13 occur. Often, mathematical expressions can be developed for 

the probabilities of detection (quadrant 4), false alarm, and a miss. In the statistical decision 

theory literature the terms Type 1 Error and Type 2 Error are often used in place of False Alarm 

and Miss, respectively (Kay, 1998). 

 

Ideally, a detection method would always detect an oscillation when it was present (quadrant 4) 

and would never detect an oscillation when one was not present (quadrant 1). Because power 

system measurements are composed of more than just forced oscillations, this ideal performance 

is not possible. Practically, there will always be a risk of failing to detect an oscillation that was 

present (quadrant 3) and falsely claiming that an oscillation is present when it does not actually 

exist (quadrant 2). It should be the goal of any detector to mitigate these risks as much as 

possible, i.e., to reduce the probability of false alarm and the probability of a miss. However, 

doing so necessarily impacts the probability of detection. 

 

 
Figure 4-13: Four possible scenarios when attempting to detect forced oscillations. 
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Detectors operate by comparing a function of measured data called a test statistic to a user-

selected value called the detection threshold. Detectors use the result of this comparison to 

determine whether or not an oscillation is likely present. Specific test statistics will be considered 

in the following subsections. It is important to note the tradeoffs that can be achieved between 

the four quadrants in Figure 4-13 by adjusting the detection threshold. For example, the detection 

threshold could be set extremely high to avoid false alarms. However, this will make it very 

difficult to detect forced oscillations, so many misses will occur. Conversely, the detection 

threshold could be set extremely low to ensure that all forced oscillations are detected. This 

approach is equally flawed because it leads to a large number of false alarms. The detection 

threshold should be set in a manner that balances the probabilities of detection, a miss, and false 

alarm for a given application.  

 

Though forced oscillations with large amplitudes generally provide the most cause for concern, 

they are not the only ones present in power systems. For some applications, it may be important 

to detect low-amplitude forced oscillations as well, but this is challenging due to their low signal-

to-noise ratio (SNR). Here the forced oscillation is considered the signal and all other 

measurement content is considered noise. Reliably detecting low-amplitude forced oscillations 

requires a lower detection threshold, but because the noise effects are relatively significant, this 

often leads to a high rate of false alarms. 

 

Comparing two detection methods can involve any number of considerations: required record 

length, delay before detection, consistent performance across frequencies, processing 

requirements, etc. However, the probabilities of detection and false alarm are two of the most 

fundamental and important metrics. When comparing two detectors with identical probabilities 

of false alarm, the one that achieves a higher probability of detection is deemed more powerful. 

Among the many other considerations listed, it is always desirable to have a more powerful 

detector because it translates to more events detected and/or fewer false alarms. The specific 

detectors described in the following sections vary in their power, but their other characteristics 

make each useful in specific situations. 

4.3.1.2. Energy-Based Forced Oscillation Detection 
Under ambient conditions, the energy in PMU measurements remains relatively constant from 

one window of data to the next. However, when a forced oscillation begins, the oscillation’s 

energy is added to the data. Thus, if the energy in two adjacent windows of data is compared and 

one has significantly more energy, it could signal the presence of a forced oscillation in that 

window. For example, the energy in each minute of data in Figure 4-1 on page 42 is plotted in 

Figure 4-14. The red line in the figure indicates a hypothetical detection threshold that could be 

applied.  
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Figure 4-14: Energy in each minute of measured data in Figure 4-1. A hypothetical detection 

threshold is indicated by the red line. 

The example in Figure 4-14 is simple, but it captures the general concept behind a variety of 

detectors. The concept is refined in (Donnelly, Trudnowski, Colwell, Pierre, & Dosiek, 2015) by 

applying filters to examine specific frequency bands individually. The practical deployment of 

this detector is described in (Kosterev, et al., 2016). By essentially narrowing the frequency 

bands to include individual frequencies, the authors of (Follum & Pierre, 2016) design a 

detection threshold with associated probabilities of detection and false alarm. Though these 

specializations become quite involved in the details, the general approach remains 

straightforward: a significant increase in a PMU measurement’s energy may indicate the onset of 

a forced oscillation. 

4.3.1.3. Coherence-Based Forced Oscillation Detection 
As demonstrated in Example 7, a periodic excitation to the system in one area can result in a 

significant forced oscillation at measured outputs in other areas. Measurements from different 

areas of the system have more in common while a forced oscillation is present than during 

ambient conditions. This fact can be exploited to detect the presence of oscillations.  

 

A specific application based on this concept can be found in (Zhou N. , 2013), which proposed 

examining the spectral coherence between PMU measurements from different areas of a power 

system. Recall from Section 3.1.3.2 that the spectral coherence provides a frequency dependent 

measure of how correlated two signals are. During ambient conditions, the spectral coherence 

between measured data tends to be small, while significant correlation at a specific frequency is 

indicative of a forced oscillation present in both sets of measurements. Noting that the presence 

of a forced oscillation causes a signal to remain correlated with itself after a delay, the method 

was extended in (Zhou & Dagle, 2015) for use with a single channel of data. The multi- and 
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single-channel approaches both rely on the persistence and periodicity of forced oscillations, 

characteristics the oscillations inherit from their sources.  

4.3.1.4. Detection of Forced Oscillations as General Sustained Oscillations 
While recognizing that natural and forced oscillations are distinct in their sources and 

characteristics, it should also be recognized that they can be detected without distinguishing 

between them. From (33), it is clear that forced oscillations appear as sinusoids in measured data. 

If an electromechanical mode is undamped, i.e., 𝜎 = 0, the transient response in (30) will also 

contain an undamped sinusoid. Thus, methods developed to detect undamped sinusoids can 

determine when either a forced oscillation or a sustained natural oscillation is present in the 

system. After the determination is made, the oscillation can be categorized as natural or forced 

through further examination. Such a method is termed an oscillation monitor in (Trudnowski D. , 

Pierre, Donnelly, & Venkatasubramanian, 2015).  

4.3.2. Identification of Forced Oscillations 
After a forced oscillation has been detected, its parameters can be estimated. From (33), these 

parameters include each sinusoid’s amplitude, frequency, and phase. Combining amplitude and 

phase estimates from multiple channels leads to an estimate of the forced oscillation’s shape. 

Perhaps the most important parameter from a practical standpoint is the location of the forced 

oscillation’s driving input, which can be used to determine corrective actions. Estimation of each 

of these parameters will be discussed in this section. 

 

To begin, it should be noted that a forced oscillation’s frequency is often estimated upon 

detection. As an example from methods in Subsections 4.3.1.2 and 4.3.1.3, if the signal energy or 

the correlation between channels crosses a threshold and peaks at 0.5 Hz, then the frequency of 

the forced oscillation can immediately be estimated as 0.5 Hz.  

 

If a detection method does not offer frequency estimation, a variety of spectral estimation 

methods can be implemented. Recall that a signal’s spectrum will peak at forced oscillation 

frequencies due to the signal power concentrated at the frequency. These peaks are apparent in 

Figure 4-6. Along with non-parametric estimators based on data alone, there are parametric 

approaches such as the Pisarenko, MUSIC, and ESPRIT methods that are specifically designed 

to capture sinusoidal signals in noise (Stoica & Moses, 2005). Estimation of a sinusoid’s 

frequency in noise has been well explored and many methods are appropriate. For many 

applications, simple spectral estimators based on the fast Fourier transform (FFT) are likely 

sufficient.  

 

The estimation of sinusoidal amplitudes is a similarly well explored area of signal processing. 

Again, spectral estimation proves a useful tool. The amplitude of a sinusoid with frequency 𝑓𝐹𝑂 

can be estimated as 

 

 �̂� = √�̂�(𝑓𝐹𝑂) ×
𝑓𝑠

𝐾
 (34) 

 

where �̂�(𝑓) is the periodogram (25) based on 𝐾 samples collected at 𝑓𝑠 samples per second. In 

agreement with intuition, this equation demonstrates that the larger a sinusoid’s amplitude is, the 

larger the corresponding peak in the spectrum will be. Similar expressions for amplitude 
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estimates can be established for other spectral estimators (Zhou & Dagle, 2015). Note, however, 

that the estimator in (34) does not account for frequency content of the ambient noise comprising 

the power system’s natural response. This issue is addressed in (Follum & Pierre, 2016) with a 

more detailed amplitude estimator.  

 

Estimation of a forced oscillation’s phase is slightly more involved because it cannot rely solely 

on spectral estimators. The problem is far from insurmountable, though. As with amplitude 

estimation, the topic of phase estimation for sinusoids has been well explored. Along with non-

parametric methods, a straightforward approach would be to fit amplitude and phase terms to a 

sinusoidal model based on collected measurements. A full description of such an approach can 

be found in (Kay, 1993), though a phase estimator specific to forced oscillations in power 

systems has not yet been published.  

 

The reader will note that the descriptions provided in this section are quite brief. This is because 

while the detection of forced oscillations in power systems offers unique challenges, 

identification of the oscillation’s parameters is relatively straightforward. However, estimation of 

the final parameter to be considered, the source of the oscillation, is also complicated by the 

complexity of power systems. Though many papers have been published on the topic, there is 

not yet widespread agreement about which methods are robust enough to consistently offer an 

accurate solution. As a result, these methods are not explored in this document.  

5. Analysis of Measurements Containing Natural and Forced Responses 
Natural and forced responses were considered separately in Sections 3 and 4, but there are 

several important considerations for analyzing signals containing both types of responses. 

Because ambient noise is always present, any forced oscillation analysis method must account 

for this natural response. However, most methods proposed for the analysis of natural responses 

were not designed to account for forced responses, which are generally temporary. As a result, 

and as demonstrated in this section, care must be taken when applying analyses specific to 

natural responses and interpreting their results.  

 

The difficulty introduced by forced oscillations to the attempted analysis of a system’s natural 

response is that they share characteristics with marginally stable natural oscillations. Recall that a 

system with a zero-damped electromechanical mode will produce sustained oscillations as part of 

its natural response. It can be difficult to distinguish between these oscillations, which are a 

serious threat to grid stability, and forced oscillations, which are sustained because of their 

driving input and do not reflect the grid’s stability. For example, consider Figure 5-1, which 

contains a forced oscillation from 30 to 60 seconds and a natural oscillation from 90 to 120 

seconds. The natural oscillation is sustained due to a sudden loss of damping coinciding with the 

initiating disturbance. The small-signal stability of the system remains unchanged from 0 to 90 

seconds, but becomes critical for the last 30 seconds of the simulation. This distinction is 

difficult to make by examining the time-domain plot, and the same can be true for more rigorous 

analyses, as detailed in the following example. 
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Figure 5-1: Demonstration of the similarity between a forced oscillation (30-60 seconds) and a 

sustained natural oscillation (90-120 seconds). 

 

Example 8: Impact of a Forced Oscillation on an “Ambient” Data Analysis 

This example considers the scenario where the electromechanical modes are to be 

monitored by analyzing ambient power system measurements with a 10-minute analysis 

window. The 20-minute set of measurements in Figure 5-2, which was generated using 

the base test model with modes given in Table 2-1, is considered. For the sake of this 

example, suppose that the analysis is rerun every 10 minutes to provide updated results. 

Thus, analyses for minutes 0 through 10 and 10 through 20 will be considered. From the 

figure, no system changes are apparent, so one would expect similar results for these two 

analyses. However, a low-amplitude, 0.385 Hz oscillation is present beginning at minute 

10 that will significantly impact the results. 

 

Suppose that spectral estimation (see Section 3.1.3.2) is used to provide a rough overview 

of all the electromechanical modes. The spectral estimate for the first 10-minutes of data 

in Figure 5-2 based on the commonly used Welch periodogram is presented in Figure 

5-3. After 10 minutes, the updated spectral estimate in Figure 5-4 would be obtained. 

Recall that peaks corresponding to electromechanical modes tend to get taller and 

narrower as the damping ratio of the corresponding mode declines. Thus, an observer 

unaware of the forced oscillation’s presence would likely conclude by comparing Figure 

5-3 with Figure 5-4 that the damping of the 0.4 Hz mode had dropped. In truth, the 

system’s modes are unchanged, and the forced oscillation is responsible for the additional 

frequency content at 0.385 Hz. Forced oscillations can cause misleading results in more 

rigorous analyses as well.  
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Figure 5-2:  Measurements analyzed to monitor the system’s electromechanical modes. 

 

 
Figure 5-3:  Welch periodogram of the first 10 minutes of ambient data in Figure 5-2. 
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Figure 5-4:  Welch periodogram of the second 10 minutes of data in Figure 5-2. 

 

Suppose that the 0.4 Hz mode is also being monitored by fitting an AR model to the data, 

as was done in Example 1 in Section 3.1.3.1. The ambient data in the first 10 minutes of 

Figure 5-2 is the same as that used in Example 1, so applying the least-squares algorithm 

leads to results identical to those given in Example 1. Additionally, the modes are 

estimated using the second 10 minutes of data in Figure 5-2, which contain the forced 

oscillation. Mode estimates for each case are presented in Table 5-1. Note that the 

estimate of the 0.4 Hz mode is much less accurate when the forced oscillation is present. 

Not coincidentally, the frequency estimate is close to the forced oscillation frequency of 

0.385 Hz and the damping ratio is significantly lower than the true value. Unaware of the 

forced oscillation’s presence, an observer would likely conclude that the damping ratio 

estimate’s declining value should be a serious concern, though in reality the system’s 

electromechanical modes were unchanged.  

 
Table 5-1.  Actual and estimated mode frequency and damping values for ambient data and 

data containing a forced oscillation. 

Actual Values 

(Entire 20 Minutes) 

Ambient Conditions 

(First 10 Minutes) 

Forced Oscillation Present 

(Second 10 Minutes) 

Frequency 

(Hz) 

Damping 

Ratio (%) 

Frequency 

(Hz) 

Damping 

Ratio (%) 

Frequency 

(Hz) 

Damping 

Ratio (%) 

0.25 6 0.245 6.65 0.247 7.29 

0.4 7 0.401 7.66 0.389 4.17 

0.6 6 0.604 6.10 0.605 6.12 

 

The least-squares method is not the only one that is susceptible to bias when forced 

oscillations with frequencies near electromechanical modes are present in the data. The 

methods described in Section 3.1.3 are not designed to distinguish between a forced 
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oscillation and a poorly damped natural oscillation. Without an alternative, they account 

for the forced oscillation’s presence by reporting a natural oscillation with a low damping 

ratio and a frequency near the frequency of the forced oscillation. This effect is an 

important consideration when analyzing data that is expected to be ambient but may 

contain forced oscillations. 

∎ 
 

The results in the previous example demonstrate the importance of distinguishing between 

natural and forced oscillations. As emphasized throughout this document, natural oscillations 

inherit their characteristics (frequency and damping ratio) from the system’s dynamics, while 

forced oscillations inherit their characteristics from the driving input. Forced oscillations are not 

indicative of problems with the power system’s stability, but they can interfere with attempts to 

monitor the system’s stability by estimating its electromechanical modes. A solid understanding 

of the oscillation sources and characteristics described in this document is vital in applying 

methods and interpreting results appropriately. 
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