An Update on the North American SynchroPhasor Initiative

Alison Silverstein
NASPI Project Manager
NERC Board of Trustees
May 5, 2015

Overview

Synchrophasor systems and applications are moving from promise to maturity.

- Almost 2,000 production-grade PMUs installed, most networked to reliability coordinators
- Many applications have matured, providing value to asset owners and RCs
- NASPI has grown and DOE-EPRI support is strong
- Current challenges and priorities

Reminder – PMUs v. SCADA

Benefits

- Time granularity
- Time-synchronized measurements
- Phase angles

BPA Chief Joseph brake test Frequency plots (right) PMU locations (below)

Synchrophasor application maturity

Important maturity distinction between technical capability v. production-grade v. accepted usage, particularly in control rooms....

Technically mature today	Maturing quickly
Model validation	Wide-area visualization
Oscillation detection & mode monitoring	Linear state estimation
Frequency monitoring & compliance	Data quality and availability
Voltage stability monitoring	Diagnosing equipment health & mis-operations
Forensic event analysis	Black-start operations & restoration coordination
Operator training (PMU-based simulations)	Synchrophasor data network support and maintenance
Automated RAS scheme (BPA)	Renewables integration
	Dynamic line loading/dynamic line transfers
	Geomagnetic-induced current identification
	Operator decision support tools
	Automated protection & controls

Value from synchrophasor technology

Major sources of value include:

- Diagnosing equipment health and mis-operations (PRC-004)
- Frequency monitoring and compliance (BAL-003)
- Oscillation detection, mode monitoring and voltage stability monitoring
- Support black-start system recovery and load restoration (EOP Standards)
- Model validation Generation, load, FACTS, HVDC; system model validation efforts under way (MOD Standards)
- Linear state estimation and hybrid state estimation
- Forensic event analysis (PRC-002 future)
- Back-up data source to EMS

Newest value source – diagnosing equipment mis-operations

We can use PMU data to identify and diagnose generation and transmission events, mis-operations, and asset health.

- Classes of PMU-observable assets:
 - Generator performance & generating equipment failures (e.g., AVR and PSS, power oscillations)
 - Transmission events & equipment (e.g., verify equipment installation)
 - Proactive uses for equipment installation and protection
 - Wind & solar plant performance and oscillations
- Benefits include safety, reliability, asset protection, damage avoidance

Failing CCVT (Dominion)

Wind plant oscillation (OG&E)

NASPI

The North American SynchroPhasor Initiative is a collaborative effort between electric industry, government and vendors to advance the adoption and value of synchrophasor technology for grid reliability and efficiency.

- 1,000 members, international scope
- Two meetings/year plus technical workshops
- Begun in 2005; 2007-2013 funding from NERC; funded by
 DOE in 2014+ with EPRI support

2014 and 2015 October meetings held in conjunction with CIGRE-NA Grid of the Future conference

Archives at www.naspi.org

NASPI and synchrophasor technology accomplishments

- Developed key standards and guidelines for synchrophasor technology, all adopted by IEEE and IEC
 - Recent PMU uniform test plan and test lab certification for C37.118.1 conformance
- Pushing technology and focused work efforts on PMU device functionality, network design, data quality, applications needs, and more
- Guidance for and lessons learned from ARRA-SGIG and demo projects – see NASPI archives and technical reports
- Growing professional and student community and interest in synchrophasor expertise (NASPI grown from 700 to 1,000 members; meetings now attract 250 attendees)
- Dedicated committees & task forces in IEEE-PES and NATF

Continuing synchrophasor challenges

- Communicating the value proposition
- Still not enough data-sharing
 - Hampers researchers
 - Hampers ability to find regional and interconnection-wide patterns and event details using big data analytical techniques
- Physical and cyber-security
 - Includes GPS vulnerabilities
- Making it easy for new adopters to install synchrophasor system and use PMU data for high-value uses
- Integrating synchrophasor-based insights into operators' existing tools for easier acceptance)

NASPI priorities today

- Demonstrating the value of synchrophasor technology for asset owners
- Assuring end-to-end data quality of delivered PMU data
- Make synchrophasor system adoption easier; document best practices
- Using big data techniques on PMU data for pattern recognition and grid condition baselining
- Moving more synchrophasor applications into trusted use in North American control rooms and planning departments
- Three new DOE-funded studies -cyber-security, next network design, & value proposition

Sample screens from NASPI oscillation detection tools test

Sources and more information

NASPI website (www.naspi.org)

Recent NASPI technical reports (https://www.naspi.org/documents)

- Diagnosing equipment health & mis-operations (3/15)
- Model validation using synchrophasor data (3/15)
- Proposed maturity model for synchrophasor deployment (3/15)
- Factors affecting PMU installation costs (10/14)

Recent NASPI technical workshops (https://www.naspi.org/techworkshops)

- State estimation & synchrophasor data (3/15)
- Oscillation detection and voltage stability tools comparison (10/14)
- CIGRE-NASPI GOTF synchrophasor tutorial (10/14)
- Model validation using synchrophasor data (10/13)

NASPI meeting archives (https://www.naspi.org/meetings)

Synchrophasor software exchange (https://www.naspi.org/synchrophasorsoftware)

NASPI Project Manager alisonsilverstein@mac.com

