A Synchrophasor Stream Processing
Pipeline Architecture for Near-Real-
Time Applications

MSc. Daniel Villegas
Dr. Athula Rajapakse

Electrical and Computer Engineering
University of Manitoba
2025

Overview

1. Introduction

2. Synchrophasor Processing Cloud Platform
2.1 Cloud Platform Overview
2.2 Substation Agent
2.3 Cloud Infrastructure

2.4 Data Pipeline Design
4. Conclusions

5. Future Work

Introduction

® Synchrophasor systems are wide area sensor networks dedicated to

take phasor power system measurements.

I ntrOd UCtio n ® Synchrophasor networks were introduced in the 1990s as a modern

alternative to SCADA systems.

® Their introduction was motivated by the increase in measurement time

resolution and the GPS time synchronization.

INTRODUCTION 4

Traditional Synchrophasor Network

® A hierarchical synchrophasor network consists of multiple

e T I
layers of PDC that forward data from Phasor Measurement | PDC |
Units (PMU) data to the corresponding PDC., :_ ntralized ControhGen _r:
Al | - T T T ="~ ~- - |
: PDC | : PDC |
Defined in NASPInet 1.0 Architecture Guidance and IEEE egional CéntrolCenter | Regional Control Center |
e Std C37.1182-2011 (20 ______L___ R |
| PDC B PDC |
: PMU oMU | : PMU PMU|
| I

Requires expensive and dedicated network infrastructure (Substation - _ pPueseton
o

INTRODUCTION 5

Problem Definition

Except for redundancy, PDC are currently single node systems
The system has limited horizontal scalability due to the hierarchical nature

Existing applications often rely on proprietary hardware that may pose a challenge when

integrating with popular big-data frameworks,

This research investigates the technical aspects of implementing a cloud-based
synchrophasor processing pipeline to enable the creation of near-real-time applications

using open-source technologies.

INTRODUCTION

6

Objectives

Primary Objectives

® o develop a cloud-based synchrophasor data platform capable of ingesting

data from multiple substations.

® To implement a generic reconfigurable stream processing pipeline where near-

real-time synchrophasor applications can be implemented.

INTRODUCTION 7/

Synchrophasor Processing
Cloud Platform

Cloud Platform Overview

Substation

Cloud platform

(0)
! In
~

PARTITION

YYY

PARTITION

Substation

Substation

PARTITION

PARTITION

PARTITION

(@) Substation with PMU/PDC data and the

agent that collects the data and initiates

the connection to the cloud

(b) Distributed Message Broker to ingest the

2}Oﬁo b data on the cloud (Amazon Kinesis)

poon (c) Synchrophasor Data Processing Pipeline

built using Apache Flink

Substation Agent

D
>
i
s
o s
< ol D
C *ﬂa >
e O Al
D S
o~

PMU

Typical Approach

10

Substation Agent

I |
I I
I I
I I
I |
I I
I) I
“ >
I = \Du I
-
_ S o “
I
I <C) I
1 m [al D) 1
3 » 1
I = © W I
I o & I
I %) m I
| |nUu AN_M_
I I
D) _1
“ 2 ﬂ“
I W-nlu_
1 =
| IR
| Ny
I Q|
)
I N1
e e e e e e e e e e e e e e e = = — |
|||||||||||||||||||||||||||||||| |
! I
| |- === ———— === ===na |
I I : 1
I I : |
| 1 ! 1
I I : 1
I I : 1
I I : |
I I - “ |
“ " =
| _ \.D| I I
1| I “ “
I 0 I
| B L
s _$D| W ot
- — "M
| | S aE oA
@)} @) [!
“ % “ 1 — 1 >
| 1 A_ k—
I !
| 1 [
I I 2 c ! m“
ol
| | = 21 &
| | oy = |
I I 01 !
O (ON
“ 1 I a_
I _ U =
g . T
| o

Proposed Approach

Typical Approach

11

Substation Agent

Batching and protocol

translation

)

C37.118 Data
Frames

Data frame

| ts (i)

[ts(i+1) |

s (i+2) |

| VA_RE

VA_IM

| VB_RE

VB_IM

Protobuf batch
| ts() |[it
| ts() |[id2
[ts() |[a3
| ts (i) || id4

|ts{i+1)|| id1

|ts{i+1)|| id2

[ts(i+1)|[id3

[ts(i+1)|[id4

12

Frame synchronization

v

Frame deserialization

¥

PMU/PDC Connection
Management

¥

Protobuf transformation

¥

Deserialized Frame Batching

¥

Batch Forwarding

Substation Agent

Frame synchronization detects the beginning of the frame and discards

incomplete or corrupted data that may be on the buffer.

Once a frame is ultimately received, it is deserialized into an object.

Connection Management establishes the connection, manages its state

and retries the connection on failure.

Received measurements are transformed to Protobuf for being transmitted

to the cloud.

Protouf frames are batched.

When a batch is created, it is forwarded to the cloud.

13

(a) Agent

-

|

Initialize connection to remote IP

l

Request configuration frame 1

Set configuration frame 1

v

Request configuration frame 2

Set configuration frame 2

v

Send DATA_TX_ON command

l—

Receive data frame

v

Async frame handler

I

Substation Agent

Connection Management

1. The agent connects to a preconfigured IP address and requests the configuration frame 1

2. Once this is received, it is set in an internal variable

3. The agent requests configuration frame 2

4. The configuration frame 2 is set

5. The agent sends a command to initiate data transmission

6. Data frames are received continuously and sent to an asynchronous frame handler

14

(b) Frame synchronization)

-
!

Setpos=0
Set buffer =[0, 0, 0, ...]

l—

/ Receive n bytes /

|

Set received data at
the current buffer position
buffer[pos:pos + len(data)] = data

v

Advance position to
pos = pos + len(data)

|

Clean leading bytes until buffer[0] ==
Oxaa and update pos

buffer(0] = Dxaa &&
len(buffer) > 3

Extract FRAMESIZE

buffer[0] = Oxaa &&
len{buffer) > = FRAMESIZE

Extract frame

v

Deserialize

I

Substation Agent

Frame Synchronization

The position of the reception buffer is set to zero

N bytes are received, and the position of the buffer is updated

Seek for the first synchronization byte (OxAA) and discard leading bytes (
Repeat until more than 3 bytes are in the buffer (2)

Extract the frame size and repeat until the whole frame is received (2)
Extract the frame

Deserialize

1.
2.
3.
4.
S.
6.
7.
8.

Repeat the process for the next frame (2)

15

Experimental Setup

® The power system is simulated using a real-time

Local Environment i Cloud Environment simulator with PMU emulation.
RTDS Simulator ' . _
5 i % , ® The substation agents are hosted in a computer
: 3 Flink
GTNETx2| S in the lab.
Py i
Network switch Sl vl . o .
tesnondieeeesd : SRR E> @ The data is forwarded as it is received to the
' SA3 1iSA4 |
— GTSYNC| |1 SA3 i SAd | e
" GAG | : cloud platform.
Satellite clock e : I

® Lastly, the data is consumed by the

synchrophasor data pipeline.

16

Four experiments were conducted at 10, 30 and 60 frames per

second. The 30 frame per second experiment was conducted twice

Substation Agent

to verify the same results were obtained

Event time tag

N\

t

Ti—1

PMU/PDC

Parse time
difference

Validation

— AT, »t— AT, »{

t

Ti—1

Substation Agent

Ti—2

To validate the substation agent's correct functioning,
the time difference between subsequent frames was
measured using the computer's monotonic clock. This

time is expected to remain constant
AT is the time difference between consecutive frames

toarse Ar€ the timestamps measured on when the frames

are parsed and ready to be batched and forwarded.

AT = tparse,i - tparse,i—l

17

Substation Agent

Expected period validation

® ¢ Is the difference between the expected period and the
measured period, which is the inverse of the data rate

® 6 is the normalized difference between the expected period and
the measured period.

® The histograms show the probability density of the normalized
error measured

0.35 4

e

w

=}
L

Probability Density
o =
[=
o w
|

e
o
o

e
=
o

Probability Density
o © © © o © ©o o
[=] Ll - M [w w =
w o w o w o w o
| ! | | | |

e
=
o

60 FPS (1)

30 FPS (2)

o

N

v
|

o

o

(=)
L

AlUA

Probability Density

=
o
L

o
]

o
o

b
s

e
[}

30 FPS (3)

o
o

10 FPS (4)

Probability Density

y
o
I

o
=]

o
=}

b
s

e
]

T T 7 T T
—40 —20] 20 40
Percent error (%)

o
o

T T T
—40 -20 0 20
Percent error (%)

18

T
40

Substation Agent

Accumulated drift validation

Accumulated time difference error in time 60 frames/s (1) Accumulated time difference error in time 30 frames/s (2)
1 1 *
o s é‘i\‘

® Since the time differences are relatively small (<10ms), the £ \’uL‘W\M g
accumulated error of the error in the expected arrival period is 5 " ,amm
calculated during the experiment to assess the long-term 5 s ‘)‘ ”'h*
performance of the program 53 -3 |/

3 w |
n-1 A m‘\f
-5 " s
AE — E Ael 0 5 R T R 30 35 0 5 T R 25 30
=0 Accumulated time difference error in time 30 frames/s (3) Agcumulated time difference error in time 10 frames/s (4)
. . 0
® |f working correctly, the accumulated error is expected to be . ¥ \)h
. . —_—_1- — 0
around zero or small relative to the period. g \') ™ g Y Nmf o
=] | =]
E_z LN Il \ E_z_ N .
W “
. . . £ £ "

@ The results show a very small negative drift (6ms during 1 hour i '\.\} i E“‘ *W] L’k _
in the worst case). This seems to be attributable to the natural - ¥ " y WWH
drift of the clock which is 27 ms every 30 min. -5 H’W

0 3 10 15 20 25 W o 10 20 20 a0 ab 60
Time [min] Time [min]

19

Cloud Infrastructure

The data pipeline, distributed broker and other supporting infrastructure is shown. G| AWS Cloud
(1) Load balancer for the user to interact with the metadata and operations registry. Private subnet Public subnet

(2) Metadata Registry
(2) A metadata and operations registry database exposed through a web and rest interfaces. Database

PostgreSQLl m
(3) An Amazon Kinesis Streams to receive incoming data from the substation agent @ @<

(4) Processing pipeline (1) Load Balancer

(4) Managed Apache Flink cluster to host the processing pipeline

(5) CI/CD tools to automate deployments

(6) Long term storage bucket

p |

(7) User

(8) Substation

(7) User that interacts with the database f.)

(8) Substation agent
E K
</>

(5) CI/CD Pipeline

(6) Long term storage (3) Kinesis Stream

Agent

20

Processing Pipeline

Detailed data transformations

. Represents a measurement at time t with channel 1D C,

Represents the relation between an operation with ID O,
and a channel by it's channel ID C..

1

4

[0n icm|[Onick |[On Cm| I

tiq

tip

ti-1

tio

21

Processing Pipeline

Dataflow model

Operation Legend

Process

€
(]
E
c
2
@
« 5
x a - leonpoid inding
o = - &
e = (@] O
e o -~ anu
L 2 X e
3 = £ Q
= = » O
Buissesoud sojesadp
Q O
e mopuip Buipyg
£
% @ pjuonesado Aghey
j—
@
o @
@ 5] >, SHIBWI9JEM SSaulapIo
= o m c I
a p @ - o i 4O N0 papunoq 104
o] © e Q c
= TR 1] ¥ o
O Q Q O O . @ i Eﬂ_ym._wnc >D >wu._wm

pliauueyd Aghey

dew pi

uonesado o} jpuueyn dnouy ejeq nds

o Jseopeoig

= SyIEWIBIBAN ON & SyIeuSlep ON

=

Jawinsuoy) eyeq

20Inos uonesadg Joseydoiyouhs

22

Processing Pipeline

Operation definition example

public class extends £

@0verride

public wvoid (<Long, =7 extends ==) {
long = () (0);
long = () (1);
long = (). (2)
long = () (3);
long = () ();
Double =) (). ()= ()
Double = () (). G {)
Double = (() - (Y ()i ()
Double = (() 2 (L) ()
Double - : (,) = . (s 1 1H

= new {) .
();
¥

—_—
—
et

——
[
[

Measurements

End-to-End latency
< >
Arrival latency
< >
(1) (2) (3) 4) ®)
. , Substation Message Message Message
Simulation agent > Broker > arrival Processing

Local communication
Latency < 10ms

Internet Communication
Latency ~ 200ms

Shuffling and
Windowing Latency

Processing Pipeline

24

Measurements

Operation Legend

Process

Watermark assignment

O Window
O

Sink / Output

Connect

Broadcast stream

2.1
4

3.3

E
«

weayis sisauny 0} JuIs

Sluswainseawl
LI} yym uoiun

SHIBULIBIEM SSAUISPIO
4O N0 papunog Jo4

swi} painseaw
pue dwejsawi) 185

25

0.005

0.002

Probability Density

0.000

0.005

0.004

0.003

0.002

Probability Density

0.001

0.004 |

0.003 1

0.001

Measurements

Pipeline Latency Distribution for 10 Frames per Second

_ e 257.00 ms \

Pipeline Latency (ms)

Pipeline Latency Distribution for 20 Frames per Second

N

233.00 ms \

10°

0.000

0.005

0.004

0.003

0.002

0.001

Probability Density

Pipeline Latency (ms)

Pipeline Latency Distribution for 30 Frames per Second
L
e — T

\

250.00 ms \\

e N

0.000

0.004

0.003

0.002

0.001

Probability Density

Pipeline Latency (ms)

Pipeline Latency Distribution for 60 Frames per Second

H \
H

\
409.00 ms \

0.000

10?
Pipeline Latency (ms)

10°

Pipeline Latency Distribution for 10 Frames per Second

> 0.008 A
£ /i
@ 0.006 /i
] /i
> /o
£ 0.004 P VA
3 i
s / i
S 0.002 / !
a / ;
0.000 — H ~
10° 12x10° 14 x10° 16 x 10° 18x10° 2x10°
Pipeline Latency (ms)
Pipeline Latency Distribution for 20 Frames per Second
0.006 ~
0.004 i
i
0.002 :
i \
! 1363.00.ms
i ~
0.000 163 1.2 x10% 1.4 x10% 1.6x 107 1.8x 107 2x10%
Pipeline Latency (ms)
Pipeline Latency Distribution for 30 Frames per Second
2 0.008
G
§ 0.006
Q
Z
= 0.004
H
4 0.002 Ny
I 1322.00,ms
N
0.000 —
10° 14x10° 16 x 10° 18x10° 2x10°
Pipeline Latency (ms)
Pipeline Latency Distribution for 60 Frames per Second
0.005 - i
F // \\ i
2 0.004 \ i
2 H
.0.003 1
g ? \
s 0.001 | 1312.00 ms \
0.000 : =
102 12x10° 14 x10° 1.6 x 107 1.8x10* 2x10°

Pipeline Latency (ms)

26

Pipeline Latency (ms)

Pipeline Latency (ms)

Measurements

Latency variation through the experiment 10 Frames per Second

1500 =

1480 =

1460 =~

1440 —

1420 =~

1400 —

1380 —

1360 —

key

2000000
2000001
2000002
2000003
2000004
3000000
3000001
3000002
3000003
3000004
3000005
3000006

Event time [min]

Latency variation through the experiment 20 Frames per Second

©
+2.875554e7

1450 =

1425 =)

1400 =~

1375 =~

1350 ==

1325 =

1300 =~

1275 ==

key

2000000
2000001
2000002
2000003
2000004
3000000
3000001
3000002

0.5 =

10+
15—
0
5

o
Event time [min]

35 o

4.0 =

Pipeline Latency (ms)

Pipeline Latency (ms)

Latency variation through the experiment 30 Frames per Second

key
1400 =| — 2000000
— 2000001
1375 =| — 2000002
—— 2000003
1350 = —— 2000004
—— 3000000
1325 | — 3000001
—— 3000002
—— 3000003
1300= —— 3000004
3000005 f’
12754 3000006 (1
1250 =
1225 =
T T T T T T T
“ o " < n ° w °
B = - o] m ki
Event time [min]
Latency variation through the experiment 60 Frames per Second
key
1500 —f —— 2000000
— 2000001
—— 2000002
—— 2000003
—— 2000004
140020 3000000
—— 3000001
—— 3000002
1300 —|
1200 ==

0.5 =

10+
15—
0

3.0 -
35 =

~
Event time [min]

27

Conclusions

A detailed description of the implementation process of a cloud-based near-real-time stream processing application for
synchrophasor was presented

It was shown that even when using a state-of-the-art stream processing framework, they fall short for synchrophasor
applications.

A novel architecture for synchrophasor data processing was introduced and tested using a real-time simulator.

An IEEE Std. C37.118™-2005 substation agent to extract synchrophasor data from substations was implemented. This was
designed to overcome some of the limitations of the current approach when it comes to forwarding the data to the cloud.

28

Future Work

* The proposed pipeline has multiple network shuffling steps. This limits its overall performance and points to a gap in the
development of stream processing frameworks for time series and more specifically, synchrophasor data.

* The data ingestion strategy can be further optimized by implementing an |IEEE Std 1344™ (1995) gateway (STTP).

* Areal time simulator was used to test this system. However, testing of this at scale needs arbitrarily large amounts of data to
be produced. A general framework for testing synchrophasor big data architectures has not yet been proposed.

29

Thank You!

	A Synchrophasor Stream Processing Pipeline Architecture for Near-Real-Time Applications
	Overview
	Introduction
	Slide Number 4
	Traditional Synchrophasor Network
	Problem Definition
	Objectives
	Synchrophasor Processing Cloud Platform
	Cloud Platform Overview
	Substation Agent
	Substation Agent
	Substation Agent
	Slide Number 13
	Substation Agent�Connection Management
	Substation Agent�Frame Synchronization
	Experimental Setup
	Substation Agent�Validation
	Substation Agent�Expected period validation
	Substation Agent�Accumulated drift validation
	Cloud Infrastructure
	Processing Pipeline�Detailed data transformations
	Processing Pipeline�Dataflow model
	Processing Pipeline�Operation definition example
	Measurements
	Measurements
	Measurements
	Measurements
	Conclusions
	Future Work
	Thank You!

