
Assessment of Inertia Using PMU Data for Indian Power System

Male Pradeep Reddy

Pradeep Kumar Sanodiya

Rahul Shukla

Aman Gautam & GRID-INDIA TEAM

Grid Controller of India Limited (GRID-INDIA)

(Formerly Power System Operation Corporation Limited, India)

NASPI Work Group Meeting and Vendor Show, April 4-5, 2023 (Tempe, AZ, USA)

Indian Grid...One of the World's Largest

- 1 National Synchronous Grid
 - electricity generation
- 3 electricity consumption installed generation capacity transmission system
- **4** Wind Generation solar generation
- **6** Hydro generation
- 9 Pumped storage installed capacity

Source: IEA Key World Energy Statistics 2021 & IHA 2021 Hydro Status Report (2019 data, 2019 provisional data)

Dimensions of Indian Power System

~412 GW

generation capacity

210 GW+ peak demand

> 4.5 TWh daily energy met

> 468,000 ckm+ **EHV** transmission

~169 GW renewables

14+ **HVDCs**

(including large Hydro)

~ 120 GW inter-regional capacity 3.2 million km²

area footprint

1.3 Billion+

people served

4 GW+ international exchanges

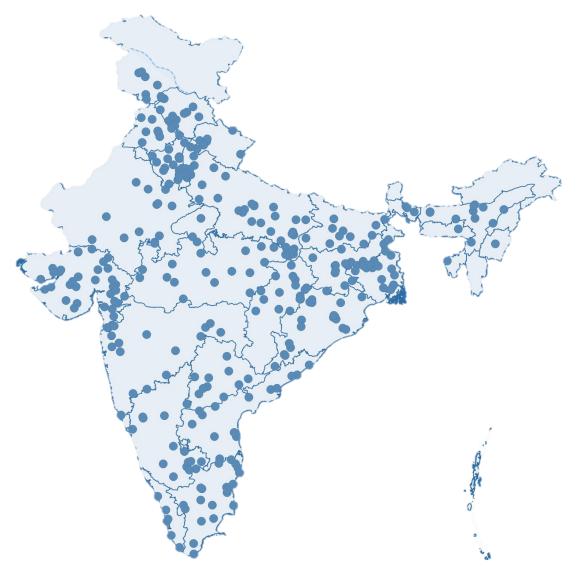
120 TWh+

annual market trades

power exchanges 6000+

market participants

50,000+ market transactions


Indian Grid: Salient Features

Typical parameters in Indian power system		Operating standards	
Highest capacity of single synchronous generating unit (nuclear)	1000 MW	Operating frequency band as per Indian Electricity Grid Code	49.90 - 50.05 Hz
Highest capacity of generating station (thermal)	4760 MW	Reference contingency (IEGC 2020 expert	Loss of
Highest solar capacity integrated at single pooling	2430 MW	committee report) for defense plans 4500	
station	2430 IVIVV	Nadir frequency for reference contingency (as	49.55 Hz
Highest wind capacity integrated at single pooling station	2305 MW	per simulations)	43.33 112
System inertia (assessed from historical data of	5 - 9	Quasi steady state frequency for reference	
2014-2022)	seconds	contingency (as per simulations, assuming FRC = 49.7 15500 MW/Hz)	
Average Power number (assessed from 2014-2021 historical data)	10000 MW/Hz		
Median value of Frequency Response	15000	Setting of 1st stage Automatic Under frequency-	49.4 Hz
Characteristics	MW/Hz	based Load shedding Scheme	
Time to reach Nadir/Zenith frequency	9-14		- 0.1 Hz /
	seconds	Setting of 1st Stage of df/dt (Rate of change of	
Observed load damping of frequency sensitive load	2-5%	frequency-based) load shedding	

Synchro phasors in India

PMUs in URTDSM phase-I

Total locations – 351

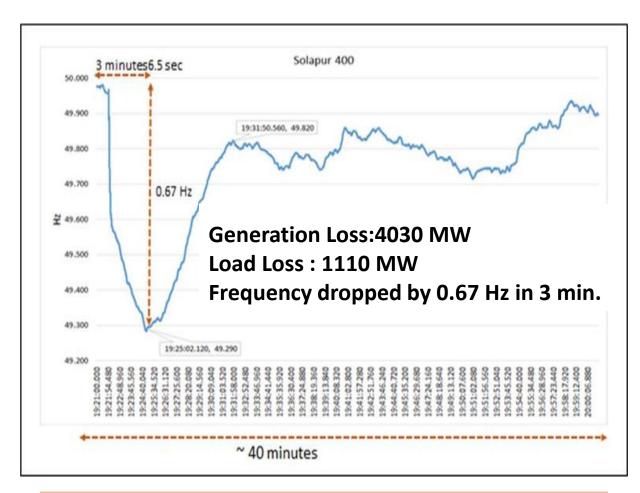
Total transmission lines – 2274

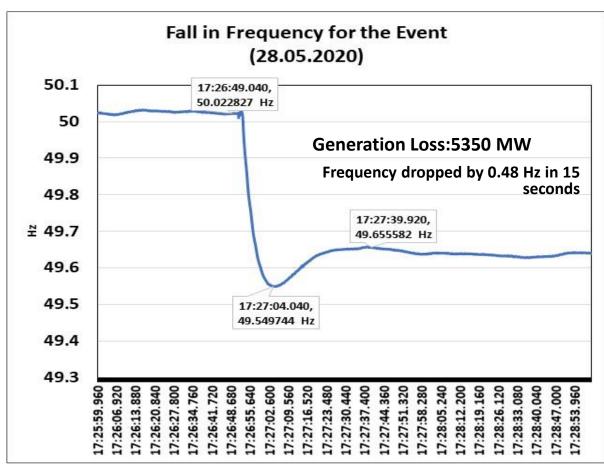
Number of PMUs – 1186

Upcoming (under URTDSM phase-II)

Locations identified – 230

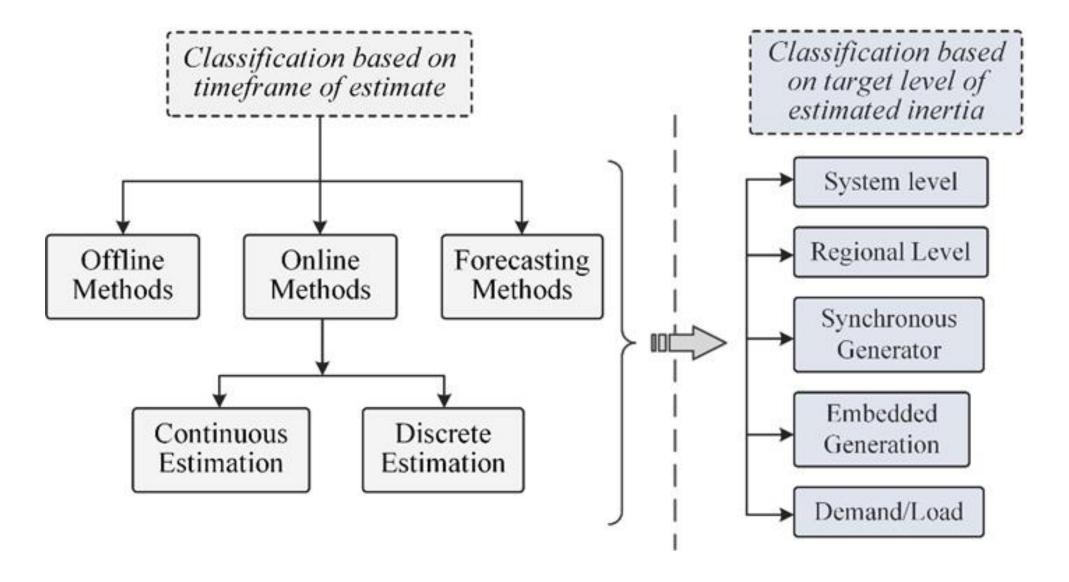
Total transmission lines – 925


Total number of PMUs - 483



Present visibility of Indian Grid with Synchro phasors

Frequency Profile during major imbalance events (PMU based data resolution 40 msec)



1st stage of under frequency load shedding was triggered

Cascading Effect resulted in Tripping at Multiple Stations

Inertia Estimation Methods

Estimation of inertia: Offline

Key Features

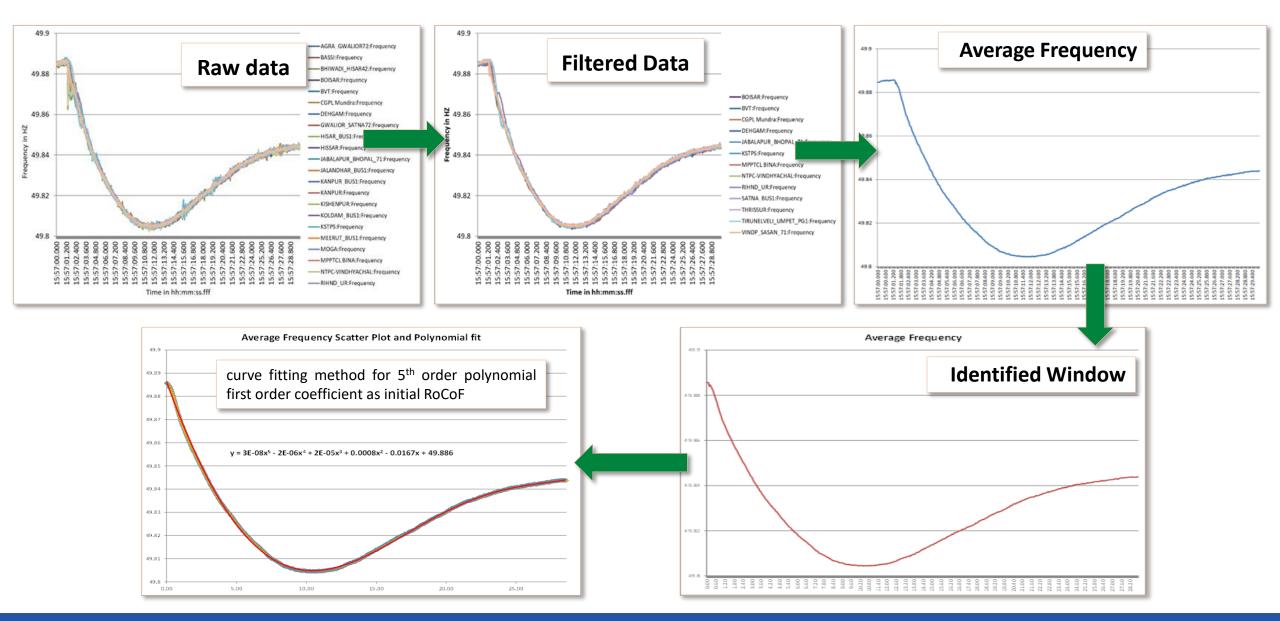
Assumption

System Base

Staggered or Aggregate event

Input Data

PMU data


Event Start Identification

Curve Fit

ROCOF Calculation

Approach for inertia estimation

Calculations for a sample event

Initial Frequency (Hz)	49.885
All India Generation (From NLDC SCADA) (MW)	144482
Actual Generation Loss (SCADA) (MW)	780
Calculated ROCOF from Avg Frequency (Hz/s) *	0.0167
Estimated inertia (sec)	8.06
Nadir Frequency (Hz)	49.804
Time to Reach Nadir Frequency (sec)	10.6
Frequency Drop (Hz)	0.0810
Power Number = $\Delta P/\Delta f$ (MW/Hz)	9626.65

$$\frac{2H}{f_0}\frac{df}{dt} = \frac{P_m - P_e}{S}$$

^{*}Captive power generation is not under monitoring in India at National/Regional Control centre which ranges from 10-15 % of total generation.

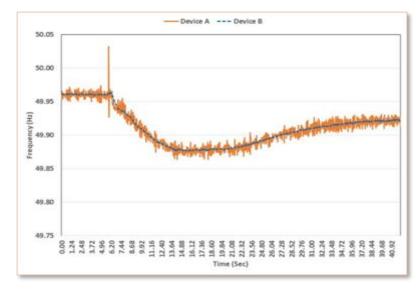
^{*}Utilisation of monitored MW in place of MVA base in calculation of inertia.

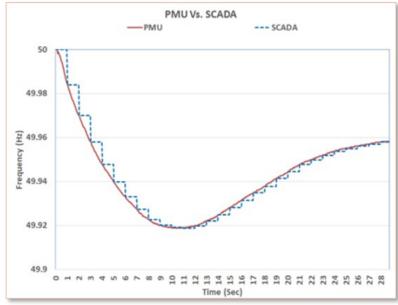
Challenges in measurement based inertia

estimation

RoCoF values reported by PMU not suitable

Important to avoid initial transient phase in calculations

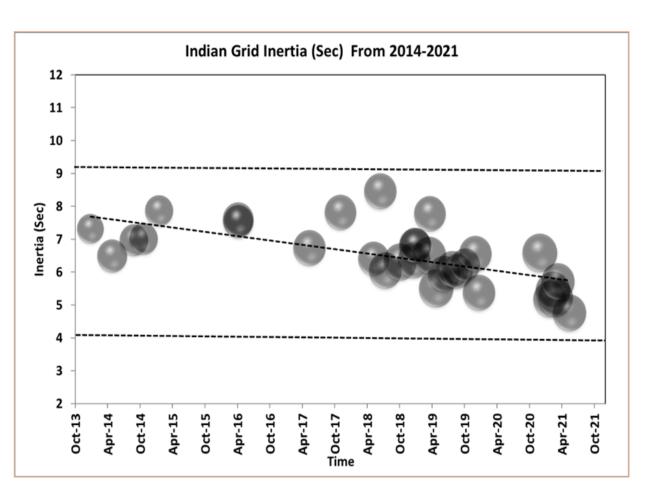

RoCoF values required at t=0+

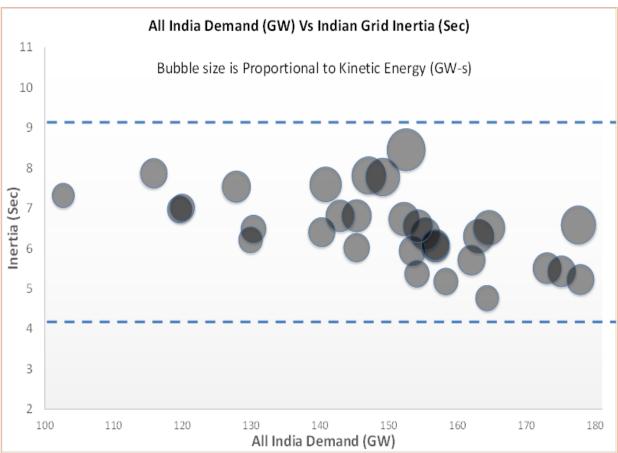

Identification of suitable moving average window

Assigning proper weightage to respective location frequency

Identifying appropriate event for inertia estimation (sequential or aggregate)

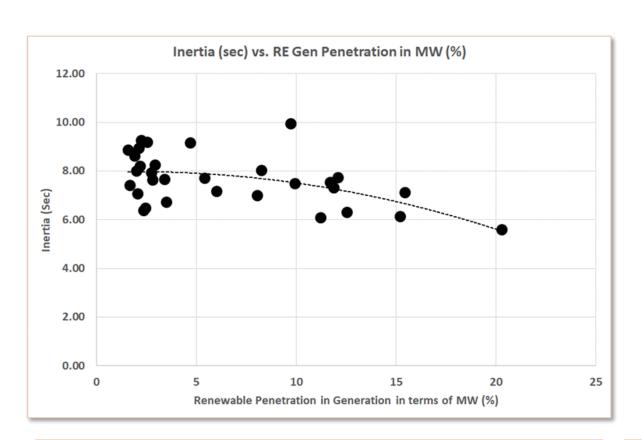
Factoring Primary response





Results on estimation of inertia (29 events)

Inertia Estimation Results

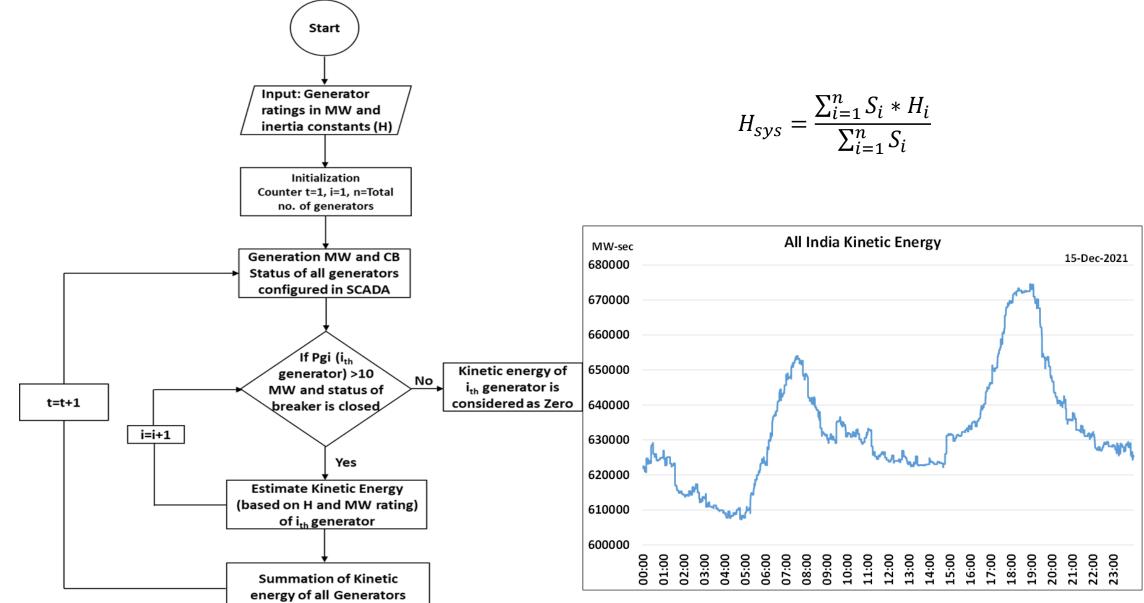


The Indian power system inertia has varied between 5 to 9 Seconds between Jan 2014-June 2021.

The mean value of inertia is 6.5 seconds.

Inertia with RE penetration and Generation Loss vs calculated RoCoF

System is becoming lighter with the increase in RE penetration


Slope is likely to decrease in case of improvement in governor response

Online inertia monitoring using SCADA

Flow chart for online inertia estimation

Inertia Monitoring at National level

All India Power System Inertia

Denien	А	Derived Value		
Region	No of Units On Bar	Capacity on Bar (MVA)	Actual Generation (MW)	Kinetic Energy (Sec-MW)
Northern Region	108	34736	29695	113328
Western Region	191	69654	57479	234004
Southern Region	166	38679	37921	166010
Eastern Region	162	41900	21893	151763
North Eastern Region	50	3092	2197	9376
All India	677	188062	149185	674482

Inertia Monitoring at Regional level

System Inertia of Northern Region		
No of Units on Bar	108	
Capacity on Bar (MVA)	39828	
Actual Generation (MW)	28237	
Kinetic Energy (MW-sec)	109391	

System Inertia of Southern Region		
No of Units on Bar	165	
Capacity on Bar (MVA)	43088	
Actual Generation (MW)	36731	
Kinetic Energy (MW-sec)	157260	

System Inertia of Western Region		
No of Units on Bar	183	
Capacity on Bar (MVA)	78648	
Actual Generation (MW)	54076	
Kinetic Energy (MW-sec)	222935	

System Inertia of Eastern Region		
No of Units on Bar	92	
Capacity on Bar (MVA)	29077	
Actual Generation (MW)	13966	
Kinetic Energy (MW-sec)	100168	

System Inertia of North Eastern Region		
No of Units on Bar	65	
Capacity on Bar (MVA)	4322	
Actual Generation (MW)	3247	
Kinetic Energy (MW-sec)	11659	

Technical Recommendations

Maintaining of power system inertia adequacy in the overall planning of system security

Inertia Estimation/ Measurement/ Forecasting tools

Load Composition Understanding and variation in load composition over different time scales

Standardising RoCoF Calculation

Periodically review of RoCoF and Frequency nadir based protection schemes

Identifying Minimum Inertia for secure and stable grid operation

Spatial Distribution of Inertia

Synchronous as one of the constraints in the future security constrained unit commitment scheme

