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Moving Average + Ideal Derivative
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Derivative Design using Maxflat

Shaping transfer function taylor terms to match desirable gain
|deal n*"order derivative in frequency domain
F(y™(©®) = ()Y ()

Designed as a linear filter

V(@) = (2 Gi(@) o —jo)! ) Y(@)
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Gi(w?) = (Z i!
k=1:N

 Design specifications

» Matches ideal derivative at low frequencies

Gi(0)=0,v0<i<n-1
» Suppresses high frequencies (noise + faster irrelevant dynamics)
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Choosing Appropriate Window Size N

Increased higher frequency suppression with N
» Should be chosen to not result in loss of relevant system
behavior

Power system in ambient conditions can be modeled
as stochastic linear system

N
Output Frequency Spectrum - S, (w) = ; o1
Ai
jo+2;
» A; characterize the time scales of the underlying system
dynamics

« Can be estimated from measurements only => full
knowledge of what frequencies can be suppressed in
derivative
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Results — Synthetic Ringdown Signal

y(t) = e %3t sin(2m5¢t) + e~ %2t cos(2m2t) + €(t)

2 Order Derlvatlve

1 Order Derivative

g0, b 7 T _IRolbuslt N I:2 I ‘ ‘ ” —RDDUSt N 3 I
——Robust N =5 500 1 ' —Robust N =10
e
|

20 —Tru o)
s 2
g0 SR
o ®

o PRI l IH ! | ‘lh |L

0 2 4 6 8 0 4 8
Time(s) Time(s)

° I".gf“,.Di:mlmi.'nrl

%> Energy’



Results - Thevenin Equivalent

* Thevenin equivalent is generally used to approximate z
the behavior of the rest of the system to local £
changes in load using a voltage source V;;, behind an
impedance Z;,

* Measured data contains both equilibrium trajectory

For steady state voltage stability analysis.

Zyp, satisifies —Al o, (8)Ze, = AV o, (t) Where, (V,, (£), 1o, (1)) is
the trajectory of operating point/equilibrium

as well as dynamics around it (V(¢),1(t)) = o4

(den (t) + Vep (t): Idyn (t) + Iep (t)) §0.3

» Equilibrium trajectory is significantly slower than 02
dynamics, mostly separable in frequency domain...can

use robust derivative to estimate Al (t), AV, (1)! 01

Load current with slow ramping
and 0.8 Hz mode
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Results - Frequency Estimation

» Loosely represents derivative of angle f = %

 Estimation algorithms differ among vendors
» Unable to compare results
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Conclusions/Recommendations

* Derivative estimation framework that accounts for time scale of interest of
underlying system dynamics

 Future work will explore using this for state estimation and control design
applications
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