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The Increasing Renewables Challenge Power Grids
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Fig. 1: Global Energy Transformation Prediction: https.//www.irena.org (left);
Average duration of power interruptions (right)

@ When renewable energy increases constantly, faults or
disturbances also become more frequent in these years.
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http://www.eia.gov/todayinenergy/images/2021.11.10/main.svg
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Faults may Trigger Blackouts and Wildfires

Fig. 2: The 2003 blackout causes 50 million people in darkness; Wildfires in
California in 2020 cost around $12 billiion

@ Faults without efficient monitoring strategies may trigger
blackouts and wildfires.
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Faults may Trigger Blackouts and Wildfires

Fig. 2: The 2003 blackout causes 50 million people in darkness; Wildfires in
California in 2020 cost around $12 billiion

@ Faults without efficient monitoring strategies may trigger
blackouts and wildfires.

@ Machine learning is promising to be the solution, but its reliability
is not guaranteed when applied to the stochastic power grids.
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Black-box Machine Learning is Powerful but Fragile
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Fig. 3: Panda image is recognized as
gibbon by adding trivial noise [1] Goodfellow e ML is vulnerable and can

et al. 2014. .
be misled or attacked by
noise and perturbations;

Fig. 4: The stop sign with some marks

misleads the deep neural networks [2] K.
Eykholt et al., 2018 IEEE/CVF.

5/30
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Fig. 3: Panda image is recognized as

ibbon by adding trivial noise [1] Goodfello .
iy 4 g i v @ ML is vulnerable and can

be misled or attacked by
noise and perturbations;

@ Perturbations in stochastic
power grids deteriorate
the performance of ML.

Fig. 4: The stop sign with some marks

misleads the deep neural networks [2] K.
Eykholt et al., 2018 IEEE/CVF.
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Central Ideas:

Robustify neural networks for fault location through:
1. Designing novel architectures by preserving physics
2. Developing physics-constrained optimization for training
3. Certifying training with physics-informed bound propagation
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Problem Formulation of Fault Location

@ Given a few measured node
voltages in Fig. 5, and partial
labels denoting location.

Fig. 5: The IEEE 123-bus test feeder,
where red ones are measured.

4Brahma 2011; Dzafi¢ et al. 2016.
bMajidi, Etezadi-Amoli, and Fadali 2014; Chet
Ghasemi, and Daisy 2018.
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Problem Formulation of Fault Location

@ Given a few measured node
voltages in Fig. 5, and partial
labels denoting location.

@ Goal: Robust to sparse
observation, low label rates,
varying loads and topology
changes when predicting
faults on the node level.

" 1t @ Traditional methods:

=ar s : e Hardware?;

Fig. 5: The IEEE 123-bus test feeder, e Impedance-based,

where red ones are measured. Traveling-wave-based,
Knowledge-based?

4Brahma 2011; Dzafi¢ et al. 2016.
bMajidi, Etezadi-Amoli, and Fadali 2014; Chet
Ghasemi, and Daisy 2018.
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Our Main Contributions

Our approach: a two-stage graph neural network framework
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Fig. 6: Our two-stage graph neural network framework

"Wenting Li, Deepjyoti Deka, “PPGN: Physics-Preserved Graph Networks for

Fault Location with Limited Observation and Labels”, Hawaii International Conference
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Our Main Contributions

Our approach: a two-stage graph neural network framework:

@ Gy in stage | learns the graph embedding of power networks for
the challenge of low observability.

Stage |

Graph Embedding
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Fig. 7: Our graph learning at stage |
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Our approach: a two-stage graph neural network framework:

@ Gy in stage | learns the graph embedding of power networks for
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Fig. 8: Our graph learning at stage |
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Our Main Contributions

Our approach: a two-stage graph neural network framework:
@ G in stage | learns the graph embedding of power networks for
the challenge of low observability.

@ The key is the adjustable adjacency A of G, using shortest
distance.

Fig. 9: (a) original graph; (b) reduced graph defined by A
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Our Main Contributions

Our approach: a two-stage graph neural network framework:
@ Gy in stage Il further enhances location accuracy to face the
challenge of low label rates.
@ The key of adjacency B of G with the output of G;: neighborhood
property 1.

(D Generator 1
4

Load
Transformer

Fig. 10: The neighborhood property.

'W. Li, D. Deka, “Real-Time Faulted Line Localization and PMU Placement in
Power Systems Through Convolutional Neural Networks”, Transaction on Power
System, 2019.
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Our Main Contributions

Our approach: a two-stage graph neural network framework:
@ Gy in stage Il further enhances location accuracy to face the

challenge of low label rates.
@ Gy represents the correlations of labeled and unlabeled

data samples.
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Fig. 11: Our stage Il graph learning framework
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Location Accuracy Rate (LAR) Comparison

Single Phase to Ground (SPG) 100 Double Phase to Ground (DPG) Phase to Phase (PP)
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Fig. 12: LAR Comparison at different label rates?

@ 24480 testing cases by OpenDSS in the IEEE 123-node
benchmark system.

2 — The number of correctly located faults — The number of training data
LAR The total number of faults ! Label rate The total number of data
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@ 24480 testing cases by OpenDSS in the IEEE 123-node
benchmark system.

@ System has voltage regulators, overhead/underground lines,
switch shunts, and unbalancing loads that vary over time.
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@ 24480 testing cases by OpenDSS in the IEEE 123-node
benchmark system.

@ System has voltage regulators, overhead/underground lines,
switch shunts, and unbalancing loads that vary over time.

@ Only 16% of the nodes in the system are measured ( 21
measured nodes );

2 — The number of correctly located faults — The number of training data
LAR The total number of faults ! Label rate The total number of data
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@ 24480 testing cases by OpenDSS in the IEEE 123-node
benchmark system.

@ System has voltage regulators, overhead/underground lines,
switch shunts, and unbalancing loads that vary over time.

@ Only 16% of the nodes in the system are measured ( 21
measured nodes );

@ Outperforms CNN, NN, and GCN for various faults.

2 — The number of correctly located faults — The number of training data
LAR The total number of faults ! Label rate The total number of data
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Robust to Load Variations

Table 1: LARs (%)when Loads Vary in Different Ranges

Ap (p.u) 053 058 064 069 0.74

CNN 939 853 84 839 82

SPG NN 925 80 774 767 74
GCN 643 57.7 564 556 55.1
Proposed 98.9 96.6 96.3 958 95.1
CNN 96.5 883 878 853 825

DPG NN 98 893 882 86.7 851
GCN 983 840 837 822 788
Proposed 98.4 941 93.7 927 92.2
CNN 975 962 96.1 951 946
PP NN 956 922 903 879 859
GCN 995 965 965 966 96.7
Proposed 99.9 99.6 994 99.2 9384

@ Generate another 110160 faults when load and topology change
@ No retraining is needed.
@ Achieves up to 15% improvement than the baseline classifiers.
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Central Ideas:

Robustify neural networks for fault location through:
1. Designing novel architectures by preserving physics
2. Developing physics-constrained optimization for training
3. Certifying training with physics-informed bound propagation
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Background

3% @ Motivations: Perturbations in power
: grids degrade the performance of
:| ? NNs, shown in the Table 2.

Fig. 13: Neural Networks

Table 2: The LAR when data perturbs
due to different load variations with
magnitudes d1 per unit (p.u.)

Load Variations (p.u.)  J1= 1 01=1.5 01=2 01=3
LAR (%) 96.25 81.61 7196 575
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Background

@ Motivations: Perturbations in power
grids degrade the performance of
NNs, shown in the Table 2.

@ Goal: Train neural networks to be
robust to natural perturbations in
power grids.

@ The state of the art:

@ Adversarial training methods can
augment the robustness of NNs
Table 2: The LAR when data perturbs (Madry et al. 2017, Shafahi et al.
due to different load variations with 2020 GOOdfe"OW and BegnIO 201 6)
magnitudes o1 per unit (p.u.) @ Those perturbations are well-design
due to some malicious attacks with
Load Variati (p.u.) J1=1 J1=1.5 9122 91=3 ==
R I((3/:)S s sier 71w a5 Weak capability to natural
perturbations.
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Fig. 13: Neural Networks
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Our Approach 1

@ Main idea: Obtain the worst-case perturbation ¢ constrained
by physical laws to train the parameters ¢ of neural networks
without extra training datasets.

@ The loss function is L(6, 0):

'"Wenting Li, Deepjyoti Deka, Ren Wang, Mario Arrieta
Paternina,“Physics-Constrained Adversarial Training for Neural Networks in Stochastic
Power Grids’, Artificial Intelligence on Transaction, 2022
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Our Approach 1

@ Main idea: Obtain the worst-case perturbation ¢ constrained
by physical laws to train the parameters ¢ of neural networks
without extra training datasets.

@ The loss function is L(6, 0):

min 5(9) = Eoriginal(e)
6 SN———

Data Fitting

'Wenting Li, Deepjyoti Deka, Ren Wang, Mario Arrieta
Paternina,“Physics-Constrained Adversarial Training for Neural Networks in Stochastic
Power Grids”, Artificial Intelligence on Transaction, 2022
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Our Approach 1

@ Main idea: Obtain the worst-case perturbation ¢ constrained
by physical laws to train the parameters ¢ of neural networks
without extra training datasets.

@ The loss function is L(6, 0):

mgn m;axﬁ(@) = Eoriginal(e) + Lworst & orignial(0> o))

Data‘lgitting Robugt’ Errors

'Wenting Li, Deepjyoti Deka, Ren Wang, Mario Arrieta
Paternina,“Physics-Constrained Adversarial Training for Neural Networks in Stochastic
Power Grids”, Artificial Intelligence on Transaction, 2022

21/30



Our Approach 1

@ Main idea: Obtain the worst-case perturbation ¢ constrained
by physical laws to train the parameters ¢ of neural networks
without extra training datasets.

@ The loss function is L(6, 0):

min  max Ly = »Coriginal(o) + Lworst & orignial(‘97 U)
9 ag e Q ~ J N~

Physical range

Data‘lgitting Robus‘t, Errors

+ [fphysical correclations of U(U)

/

Physics Constraints

'Wenting Li, Deepjyoti Deka, Ren Wang, Mario Arrieta
Paternina,“Physics-Constrained Adversarial Training for Neural Networks in Stochastic
Power Grids”, Artificial Intelligence on Transaction, 2022

22/30



@ |EEE 68-bus system? through
power system toolbox (PST)b.

@ 560 training data with 36
measured buses.

@ Natural perturbations are
~ generated when loads vary with J4

Fig. 14: The IEEE 68-bus and control input changes with d,.

benchmark Power Grid with five .
areas Rogers 2012.

bChow and Cheung 1992.
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Robustness to Natural Perturbations

Table 3: Location Accuracy Rate (LAR %) when the load vary within 61

Type(Method) 01=1 61=1.5 61=2 64=3
Base 96.25 8161 7196 575
TRADES 9580 88.21 76.96 66.61
FGSM 90.89 8446 75.36 62.68
PGD 90.36 80.18 71.25 58.04

TRADESequ (Proposed) 97.86 89.64 81.96 73.39
TRADESphysics (Proposed) 98.21 91.96 82.86 74.64

@ TRADESequ and TRADEShsics Improve the LAR3than existing
methods* by 1% - 17%.

3LAR = The number of correctly located events
Total number of events

“where “Base” denotes the stochastic gradient descent method; “TRADESeq,”:
When the physical regularization is applied. “TRADESpnysics”: when regularization and
physical ranges are included; TRadeoff-inspired Adversarial DEfense(TRADES); Fast
Sign Gradient Method (FGSM); Projected Gradient Descent (PGD).
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Central Ideas:

Robustify neural networks for fault location through:
1. Designing novel architectures by preserving physics
2. Developing physics-constrained optimization for training
3. Certifying training with physics-informed bound propagation
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The State of the Art
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Fig. 15: Verification is to check whether the region of NNs’ outputs (red
areas) satisfies some decision boundary and is intractable; Interval Bound
Propagation (IBP) method is tractable (Gowal et al. 2018)

@ IBP can efficiently verify it by propagating the interval bounds
(green areas) of the regions.
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Our Approach?®

Current constraints SN :

Fig. 16: The voltage limits propagate; the current limits propagate

@ Tighter bounds of the region with physical ranges, including
the voltage limits, current limits and their correlation.

SW. Li, K. Dvijotham, D. Deka, “Physics-Constrained Interval Bound Propagation
for Robustness Verifiable Neural Networks in Power Grids”, Al for Energy Innovation,
2023
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Numerical Results

Table 4: Performance comparison when loads randomly vary within 6,

Type (Method) 6,=1 6,=1.5 §,=2 =3
Base (LAR %) 96.25 81.61 7196 575
IBP (LAR %) 98.93 94.64 8429 6143
IBPphy (LAR %) 99.64 96.61 89.29 64.29
IBP (VR %) 93.93 82.14 69.64 475
IBPpry (VR %) 97.32 90.36 79.46 54.29

@ “Base” denotes that no verification training; “IBP” denotes the
baseline and “ IBPpp," denotes the proposed method.

@ We improve the LAR and VR 6 up to 5% and 10% respectively.
6

LAR = The number of correctly located cases

Total number of cases

VR = 1henumber cases satisfying the specification

Total number of cases
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Conclusions and Future Works

@ The stochastic and dynamical environments in power grids require
machine learning algorithms to be robust and interpretable;

@ Design a physics-preserved graph network framework for fault
location, showing superior performance than the state of the art
when data is imperfect (low label rates and noisy);

@ Propose a training algorithm with physical constraints to
enhance robustness of neural networks in the perturbed
environment;

@ Create a physics-Informed verification for neural networks in
power grids to guarantee the reliability.

@ Future works will generalize the art of guiding machine
learning with physics for extensive applications, such as stability
prediction, state estimation.
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Thank you! Questions? J

Job Search for modelers of microgri

@ Postdoc:

https:/lanl.jc ch/jobdetails/microgrid-postdoctc h- iate/f47f3ac6-7caf-4213-a325-f1ee3b4489e2
@ Scientist:
https://lanl.jobs/search/jobdetails/microgrid-scientist-scientist-2/b2696055-3997-4a53-a246-147bc4e9f2fe

Email: wenting@lanl.gov

o @Alamos W

Center for
NATIONAL LABORATORY 3 :
° EsT 19430 Nonlinear Studies
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