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Present
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Feb 2017

Nov 2011 -
Feb 2016

CEO and Co-founder @Zaphiro Technologies
* Product management

e Sales and Business development

* Fundraising and Company growth

Post-doc @EPFL

* Responsible for industrial collaborations (NI, Intel)

« Management of projects with leading Swiss utilities
(Romande Energie, SiL, etc.)

PhD & Teaching assistant @EPFL

 PhD thesis: “DF T-based Synchrophasor Estimation
Algorithms and their Deployment in Advanced
Phasor Measurement Units for the Real-time
Monitoring of Active Distribution Networks”

* Researchinterests: Phasor Measurement Units,
Synchrophasor networks, Time synchronization
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About Zaphiro

Customers

Partners

W

Fast growing company based in Switzerland

Synchrophasor-based solution to increase the resiliency,
sustainability and efficiency of distribution grids

Over 180 SynchroSense D-PMU devices installed in the field
monitoring >1600 grid assets, >200 km of MV lines 24/7
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Distribution grid monitoring & automation system based
on D-PMU technology

Distribution-Phasor Measurement Unit (D-PMU)

device:

* Time-synchronized + high speed measurements
* |deal for substation retrofitting

Utility-scale
batteries

Control
setpoints

O at > 4 .*:
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S |
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S Control center
Measurements (SCADA/DMS)
Grid status
& alarms
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Modular and scalable Software Platform:
* Fullinteroperability with 3" party devices
« Empowered by patented algorithm

Real-time grid monitoring
- Full grid visibility with as little as 10% of
measurement coverage

Accurate fault location
- Automated fault location to reduce the
duration or even prevent blackouts

DER integration and control
- Automatic control of utility-scale batteries
to always guarantee grid stability

Offline grid analytics
- Advanced grid analytics for optimal grid
planning and predictive maintenance



Relevant D-PMU projects with European utilities
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Lessons learned and challenges experienced in our
D-PMU deployments
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Challenge #1: The IEC/IEEE 60255-118-1Std. has not been

designed around D-PMU use cases

4.1 Input and output quantities

As shown in Figure 1, the input quantities are the time and the power system voltage and current
signals. The time signal shall provide UTC time with sufficient accuracy that the PMU can meet
the specified performance requirements. The time signal shall meet the input requirements
specified by the PMU manufacturer. Annex A reviews common formats.

Voltage and current signals shall be supplied to the PMU as analog quantities over wire or as
data packets over communication circuits as specified by the manufacturer. These signals
represent the AC power system signals.

Phasor measurement unit (PMU)

(device or function)
UiCtime - - - - - —"—-"—"—"—-"FF—-"—"—"———————————
,: I'_ 1 — — — —» Synchrophasors
v :

|
|
|
AC voltage )— — — ¥, Estimate synchrophasor | [T~~~ T T T~ '|L _____
values for AC voltage and v
current waveforms based on ) __,| Frequency &
time input L5 Estimate frequency | | T ROCOF
L —— and ROCOF

Figure 1 - Input and output quantities

7 © Zaphiro Technologies 2023

Conventional vs non-conventional (low-power)
VTsand CTs

The current standard assumes analog inputs
from conventional VTs/CTs outputing high
voltage (100-300 V) and current (1-5 A) signals

Less than 10% of distribution substations in
EU are today instrumented

Initial D-PMU rollouts will be based on
“retrofit” solution which typically adopt non-
conventional instrument transformers that
output low-voltage signals (from 22.5/225
mV to few V), due to their lower costs,
dimensions and improved performance




Challenge #1: The IEC/IEEE 60255-118-1Std. has not been
designed around D-PMU use cases

5.4.1 Performance classes Performance classes

Compliance with the requirements shall be evaluated by class of performance. This document . The current standard defines P (Protection)
defines two classes of performance: P class and M class.
and M(Measurement) performance classes

In general, P class has shorter measurement latency time, narrower frequency range, and lower . .
harmonic signal rejection requirements than M class as well as no out-of-band signal rejection ° Both C|aSSGS, as defined today, are irrelevant

requirement. M class allows for longer latencies, allowing more filtering for a wider frequency for D-PMU applications
range requirement and increased harmonic and out-of-band signal rejection requirements.

« P-class cannot be used during fault

P class is intended for applications requiring fast response such as protection applications. As conditions due to the currently limited

an example, the P-class reference model filter (Annex D) has a step response that is monotonic o

(free of over and undershoot) and fully settled within one cycle. VOltage (80'120 7 Vnom) and current (10'
200% |,,) measurement range

M class is intended for applications which could be adversely effected by aliased signals caused o M-class: the Ionger window Iength is not

by out-of-band interference yet do not require low measurement reporting latency or short step . . . . . .

response time. As an example, the M-class reference model filters (Annex D) have step compa_tlble with faster distribution grld

responses with some overshoot and ringing, and significantly more measurement reporting dynamlcs

latency than the P class model.
« Also, while both monitoring (measurement)

These two class designations do not indicate that either class is adequate or required for a H : : H
particular application. The user shall choose a performance class that matches the and fault location (pl’OtECthﬂ) appllcatlons
requirements of each application. The user should consider the inherent trade-off between are relevant for D-PMUs, the purohase of 2
frequency domain and t|me domain performance. Separate devices for 2 different Set Of

All compliance requirements are specified by performance class. A PMU shall meet all the appllcatlons is not feasible

requirements as specified for a class, in order to be considered as compliant with this document
for that class. If the vendor provides both P and M class performance, these shall be user
selectable.

8 © Zaphiro Technologies 2023



Challenge #1: The IEC/IEEE 60255-118-1Std. has not been

designed around D-PMU use cases

For the harmonic distortion test, the input signals shall be represented by Equation (15),
Equation (16), and Equation (17):

X, = X, cos (2nfpt) + X, k, cos (2nnfyt) (15)
Xp = X, €08 (2nfpt-2n/3) + X, k, cos (2nnfyt-2nn/3) (16)
Xe = Xy, €os (2nft+2n/3) + X, ky cos (2nnfyt+2nn/3) (17)

where
X is the amplitude of the input signal,
Jfo is the nominal power system frequency in Hz;

ky is the harmonic amplitude factor, and n is the harmonic order.

See Table C.1 for the harmonic phase sequence.

Table 2 - Steady-state synchrophasor measurement requirements

Influence quantity Reference Minimum range of influence quantity over

condition which PMU shall be within given TVE limit
Performance - P class Performance — M class
Range Max. TVE Range Max. TVE
% %
Harmonic distortion <0,2% 1 %, ea_ch 1 10 %, each harmonic 1
(single harmonic) (THD) gg{ff’c’mc up to up to 50

© Zaphiro Technologies 2023

Testing conditions

e The current testing conditions are not
completely representative of distribution
grid operating conditions

« Harmonic distortion test assumes 1
harmonic at a time, whilst D-PMUs are
typically processing very complex spectra
characterized by the presence of multiple
harmonics simultaneously

« Steptestare characterized by low amplitude
(10%)/phase steps (18 deg), and are not
representative of typical step seen during
fault events in voltage/current signals



Recommendations for a revision of the current PMU
standard

Recommendations
1.  Contemplate the possbility to interface PMUs to
@IEEE IEC/IEEE 60255-118-1 non-conventional instrument transformers
’ Edition 1.0 2018-12 * Update input signal ranges and measurands
INTERNATIONAL 2. Deinfition of a new PMU performance class for
STANDARD distribution applications (D-class) with new set of

testing conditions

«  Wideramplitude ranges for steady state
conditions

«  Steptest with higher amplitude/phase steps
« Complex harmonic spectra

colour
inside

3. Allow the possibility to certify PMUs for “extended
accuracies” both under steady-state and dynamic

conditions

 Forcertainapplications it is not sufficient to say
“this PMU is Std. compliant”

Measuring relays and protection equipment —

Part 118-3: Synchrophasor for distribution systems - Measurements

Join IEEE WG C41 for a new D-PMU Std!
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Challenge #2: Power utilities are rolling-out their private
networks, but it takes time
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Fiber networks are still the favorite
options for many utilities, due to their
higher security and performance, but
their deployment inherently takes time

Utilities that need to accelerate their grid
digitization strategy have started
looking/implementing public/private LTE
networks due to their lower TCO and
faster rollout times(e.g., AMI)

But are LTE networks compliant with
the more demanding PMU requirements
(latency, bandwidth)?



LTE network are a viable solution for distribution
synchrophasors

 Coverage: Public LTE networks guarantee
complete coverage in most countries

Latency

« Performance: Average LTE latency (30-40ms) (ms)
allows to cope with most PMU uses cases under 700
consideration (see next slides)

600
» Flexibility: LTE networks can be used for a
variety of use cases, from highly data intensive
ones(e.qg., D-PMUs)to less demanding

500

400

N\

applications(e.g., AMI) 300
 Power-backup: LTE base stations usually 200 \
integrate a power backup making them suitable 100

for use during faults/blackouts(e.g., FLISR) 58

0

« Costs: Public LTE networks are characterized by ooy moss G Veh Evowed HSDPA - HSPA - LTE

very low startup costs
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A view on public LTE coverage in Switzerland
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Source: "Mobile Coverage” by Swisscom
https://scmplc.begasoft.ch/plcapp/pages/qis/netzabdeckung.jsf?netztyp=Ite
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https://scmplc.begasoft.ch/plcapp/pages/gis/netzabdeckung.jsf?netztyp=lte

view on public LTE coverage in US

. 4G LTE Coverage as of May 15, 2021 (AT&T Mobility, T-Mobile, UScellular, Verizon)

Voice: 90% cell edge probability, 50% cell loading factor, maximum resolution of 100 meters. Data: 5/1 Mbps, 90% cell edge probability, 50% cell loading factor, maximum resolution of 100 meters.
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» [ AT&T Mobility LTE Data

Newfound
‘and Labra

»[ "] AT&T Mobility LTE Voice
» [ T-Mobile LTE Data
»["] T-Mobile LTE Voice

» [ Uscellular LTE Data

>

[ uScellular LTE Voice

» [ Verizon LTE Data

=

Verizon LTE Voice

Data download links:

Download Broadband Mapping Files (Shapefiles)

Legend o

AT&T Mobility LTE Data
AT&T Mobility LTE Data

T-Mobile LTE Data
T-Mobile LTE Data

UScellular LTE Data
UScellular LTE Data
|

Verizon LTE Data
Verizon LTE Data

Source: "Mobile LTE Coverage Map” by FCC

https://www.fcc.qov/BroadbandData/MobileMaps/mobile-map



https://www.fcc.gov/BroadbandData/MobileMaps/mobile-map

D-PMU application infrastructure and process
requirements

A

Hours/days/ _|
on-demand

hseC =—f=—

1sec =—f=—

Latency

500 MS =—ftem

100 MS  =—fpm

Advanced grid planning and analytics

(asset manangement, PQ analysis, predictive mainteance, load/DER
forecasting etc.)

Wide area monitoring

(control room)

e : Microgrid operations
Distribution automation,

DER management

Minimum data availability:
@ 99%(group)
@ 95%(group2)
@ 20%(group 3)

Wide are protections

—>

15

| | | | | |
10 Hz 20Hz 25Hz 30Hz 50 Hz 60 Hz

Reporting rate
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100Hz 120 Hz

Source: "Distribution System Synchronized Measurement
Technology Deployment Industry Roadmap” by Quanta Technology



Public LTE networks can satisfy the performance
requirements of application groups 2-3
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US Utility Private LTE Programs
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FPL

Source: Utility Broadband Alliance (UBBA)
https://www.ubba.com
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Benefits of private LTE networks
« Guaranteed performance (SLA)

» Higher availability than fiber networks
with a lower rollout effort

» Higher reliability and resiliency during
extreme events

* Higher security standards than public
LTE networks

» Fasterrestoration compared to public
LTE networks

* More appelaing economics for utility
companies than OPEX-intensive public
LTE networks


https://www.ubba.com/

Challenge #3: GPS is not the ideal time synchronization
solution, particularly in congested urban environments

« Limited sky visibility in congested
urban environments limits the
applicability of standard GPS
receivers for accurate PMU time
synchronization

|
=
+~ + ltischallenging from a feasibility
I perspective, connecting a D-PMU
installed in an underground
distribution substation to an outdoor
GPS antenna

« GPSantennaare more prone to
vandalism, as distribution substations
are more accessible to the public

18 © Zaphiro Technologies 2023



GPS data logging by a PMU installed in Hong Kong cCLP@ +=

~1hour
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Multi-constellation GNSS receiver with stable clock for
reliable free-running operations

! it

+400ns £ ¥ H

Edeii

-400ns :§
survey fixed

Weak-signal start-up with aiding and single satellite
capability support severe signal environments
Survey-in provides error-free, self-determination of
fixed position

Fixed-position mode offers timing stability even in
poor signal conditions

us 0+

From COM12_141028_131214.ubx

Time Interval Error

1600 1800
seconds

<3 microseconds 1-hour internal oscillator holdover
(lab measurement)

Relibale free running operations also in temporary
absence of GNSS satellites
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Wide-area PTP time-synchronization

Precision Time Protocol (PTP) Wide area PTP synchronization
Requires availaybility of fiber network

* Protocol used to synchronize clocks throughout a
computer network (IEEE 1588)

» Master-slave synchronization scheme (automatic
master selection)

« Single GNSS-referenced clock (master)
Simplified installation
* Increased timing reliability

« Devices share synchronization packets to

calculate propagation/internal delay and b R
adjust/steer their internal clocks to stay in sync ) & b

t1 s ’ : P Ny
Sync % o ¢ Y ) ~ o
Ll [ \) > ] =N
-"' .i"l A R \..'- v | ’
\ F y o ] b \. PR
Follow_Up % >

Master clock / N
t4 Delay_Request Slave clock & ® b } b PTP master
=
m‘ v & rrooe

) _ Fiber link
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Wide-area PTP time-synchronization

Field implementation example

22

PMU data communication and time-
synchronization via already available fiber
network

Fully PTP-compliant network:

* Fiber networkin“star” topology, with fiber links
up to 2 kmlong

e Cisco Catalyst C9407R PTP-compatible switch
located in central switching substation

« b PMUsequipped with GPS antenna acting as
potential PTP grandmaster clocks

 Election of best master clock via I[EEE 1588
BMCA, based on clock accuracy

 Rest of PMUs acting as PTP slave clocks

PTP synchronization accuracy assessment via

1588 protocol and via reference GPS antennain 4
substations

Backup
GPS antenna

?

Distribution substation

D-PMU

En

GPS antenna

[

Distribution substation

D-PMU

=
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PTP switch

=Pi-L

Backup
GPS antenna

%

Distribution substation

D-PMU

En

Distribution substation

D-PMU

=

SynchroGuard
(PDC)

Fiber links



=Pi-L

Wide-area PTP time-synchronization

Time synchronization accuracy
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Challenge #4: Distribution grid size and complexity
requires a different PMU deployment and architecture

s By it SR Mg ey T o ——a « A medium-voltage distribution grid is composed by
1 """ = g . e g v B e 100-500x more nodes than the corresponding high-

1 = g T v W o MO Sy o voltage transmission grid (a typical DSO in EU

o L Foa k(] {teage™ T E7] o= g manages between 1'000-100'000 distribution
LTET_ D = Tyt e e e substations)

. T T BT del i L R D-PMU solutions (hardware and software)

A b o et et T must be able to cope with 1000s of

o Ol N e Ll Ty i g T b N measurement points/grid nodes
ael { = L LT 1% - =Ly T8« Atthe same time due to budget constraints and to
B E R T Tl § - e e A P i B align with the overall digital strategy of a power
PbE—n L [T td by Lgog— ( yae utility, a D-PMU rollout will happen gradually, with
. T[T Lntlaa (6% o, (=Tl ot T— typical initial D-PMU coverage <10%
I i e A Tl o S w— Ty R |$ D-PMU solution (hardware and software)

o ks bptaait ot L= b T T iy must integrate optimal placement tools

sUNBE- gy R B able to cope with diverse D-PMU
4 v =y 9 L O 1 U coverages
" { 'i - =1
it e
(i i 3 3 . i
A .

Portion of Single Line Diagram of Swiss Utility Romande Energie
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Optimal PMU placement

25

S,{\' Netze BW

Problem statement

e (Customer does not allow/foresee installation of PMUs in more than 10%
of grid nodes, both because of budget limitations and lack of resources
able to maintain such a device fleet

 Optimally place 7 D-PMU devices, taking into account

Solution

Grid size (80 nodes)and topology

Loads characterized by different unpredictability levels(e.g., residential
vs commercial vs industrial loads)

Presence of distributed generation(solar, wind, CHP units, hydro)
Installation constraints(e.qg., private distribution substations)
Target applications/use cases

Budget limitations

* Optimal PMU placement toolbox solely based on grid “digital twin”
concept, which can operate with different level of details of the grid

model

© Zaphiro Technologies 2023



From a centralised architecture based on distributed
physical systems and a central software application...

Level 3: WAMS
Applications

[ Super-PDC ]
Level 2:
Data management

Regional PDC [Regional PDC] Regional PDC

Level 1:
Data acquisition
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... to a fully virtualized solution based on optimally
distributed "smart-PDC" and a central data platform

X Requirements for a DSO-ready distribution

t.:_,%:' Synchrophasor data platform (on-premise/cloud) synchrophasor platform

From PDC to smart-PDC: automatic extraction of
actionable insights/value added information from
synchrophasor measurements

(.- | ] . .
Smart (] e * Local phasor data concentration and processing
- 1) Primary 2 3 for real-time closed-loop automation schemes
substation 1 I requireing faster response times

o « Optimal system segmentation in multiple (local)

econaary . . .

substation T —: T —: smart-PDC instances based on underlying grid
topology and available resources

« Virtualized solution, able to run on different

T -'T -'T T -'T -'T platforms (on-premise/cloud)and environents

(substation/data center) depending on the specific

' ' ' ' customer needs
I I Centralized synchrophasor platform (utility data
center/cloud system)for global grid state
reconciliation and long-term data storage
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Challenge #5: When it comes to PMU’s, DSOs and TSOs
have different needs and expectations

Z\(l),:
A4

Distributed
generation

&

Energy storage EV charging

! !

R
ofoo rj Mno

Power Transmission Distribution Distribution
generation (High-voltage) (Medium-voltage) (Low-voltage)

Major DSOs challenges today:

¢ 1. Grid 2. Security
observability E of supply

¥pamm 3. DER

=— integration
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Aging grid infrastructure, extreme
weather events and massive DER
integration are putting increasing
pressure on DSOs to invest in digital tool
to safeguard the security of electricity
supply and unlock new services required
by their new role

DSOs will be hesitant to invest in
synchrophasor (1) if they are not able to
tackle their core problems/strategic
developments and(2)if they do not
integrate with their existing IT/0OT
environment



A proposal to integrate distribution synchrophasor in the
current IT/0T environment of a utility company

Typical data sources (IEDs): Control room integration

Remote Terminal Fault Passage Protection
Units (RTUs) Indicators (FPIs) relays

3 lz
E ’ D-PMU
- y data platform
Energy (smart) Power Quality Distribution
meters (PO) meters Phasor Measurement

Unit (D-PMU)
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Must-have features for a D-PMU data platform

D-PMU
D-PMU

b Data Concentrator & Time-aligner
A
é % Topology Processor
r 4 \ \

D-PMU @ Grid model

9 Long-term

database

data platform

State Fault Event Detection

l Estimation Location & Classification

Control center 2
(SCADA/DMS) '«
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Two core D-PMU applications and related use cases

1. Distribution system state estimation 2. PMU-based fault location

Benefits: Full-grid visibility on voltages/current/ Benefits: Automatic identification and location of
power flows with as little as 10-20% measurement permanent/ incipient faults, blackout prevention,
coverage. enhanced SAIDI/SAIFI.

GPS
d(m)
€= ———— >
b o—/—1 — 11—
Z Z
PMU, Z: PMU,
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Distribution System State Estimation (DSSE)

S,
,\/f\" Netze BW
Experimental validation in an active distribution grid in Germany
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- Full grid visibility (estimation of nodal voltages, nodal/branch
b o~ currents and active/reactive power flows) based on a limited
number of high-quality measurements from D-PMus
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Distribution System State Estimation (DSSE)

Accuracy assessment

S,{\' Netze BW

b Voltage estimation error
5 ] S R e P ) el P P e oy o e el P ot e o) v exp PR PP o eI P g et e e e o g Ep P e G P s Pt v b e e

e

o

©
I

+
T+
+
L + _
4
L + |
meEHB
S~ N ™

o
n

o

o
o
=
I
o

~
»
Relative error [%]
S
»
T
Absolute error [V]
IS

e
o
R
I
N

T~ ANMOTH ONO® M TN ONOD
D OHOOHOOMmOHOM

o
[
=)

1
1
1
1
1
1
1
1
1
1
2
21
22
23
24
25
26
27
28

OO T N ST NMITNHONOD - &N
N MMM T TITIT I n v

Branch current estimation error
5L e e e e e st e Ot e e e e S B O B S U e e e ) B EEt S R U ECey EEUSY RSt ) NS EESS OSSO EOO OO

- =N
o N
| I

©
I
-
=)
T

o
[

»
Relative error [%)]
N £ [=2]
T T
Absolute error [A]
[3,]
T
3.4 HI - ———-

- ST+
- [ ——H-HHHHH
[ |- ———-HH +
- -—— -+
- -—————H

s

~
15 HO- .- 4

__ED__

X b - Negligible voltage estimation errors(<0.01%)
b P - Limited branch current estimation error (95t percentile <1.4 A) for
accurate line/transfomer congestion monitoring
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PMU-based fault location

Real fault example in an overhead MV grid in Switzerland
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Grid characteristics:
* Feederlength: 21.5 km(radial topology)
« Neutral treatment: compensated (with Petersen coil)

« Nominal voltage: 20 kV L-L
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PMU-based fault location

Faulted area identification

%
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Benefits of D-PMU based faulted area identification
» Sensitivity: detection of low current faults

* Reliability: no false alarms raised
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23201020 23201040 23201060

23201080 23201

Speed: immediate (<100 ms) faulted area identification
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PMU-based fault location

Fault location within the faulted area

T I
B
-

L] L3
enefits of D- ased fault location

* Accuracy: thanks to D-PMU time synchronization
Resiliency: against DER/load infeed

36

Selectivity: identification of the faulted component(s)
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D-PMUs: what do we need to “cross the chasm”?

37

A new D-PMU Std. designed around
the core D-PMU use cases and
applications, able to clarify the
requirements and ambiquity around D-
PMU technology

More industry involvment to increase
the amount of D-PMU vendors and cut-
down the costs of today's D-PMU
devices

A research community focused on the
development of novel and impactufl D-
PMU applications able to justify the
investment on D-PMU technology

EARLY MARKET THE CHASM

PRAGMATISTS

i TECH ENTHUSIASTS

o

INNOVATORS
2.5%

EARLY EARLY
ADOPTERS MAIJORITY
13.5% 34%
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