

DOE FOA 1861 Research Outcomes

October 18, 2022

NASPI Work Group Meeting and Vendor Show Charlotte, NC

Shuchismita Biswas

Electrical Engineer, PNNL

PNNL is operated by Battelle for the U.S. Department of Energy

Background

- Aimed at advancing the state-of-the art in big data analytics applied to transmission-level PMU data
- First-of-its-kind large anonymized PMU dataset compiled- spanning multiple years, three US interconnections and with event logs (~20 TB)
- Eight research grants to teams formed by industry and academia
- Developed/evaluated methodologies at different TRLs
- Fast dissemination of major findings to the power systems community through a *meta-analysis report*

S. Biswas, J. Follum, E. Andersen and J. Banning, "Big Data Analysis of Synchrophasor Data: Outcomes of Research Activities Supported by DOE FOA 1861", PNNL-33548, Oct 2022.

Pacific Northwest	
PNNL-33548	
	Big I of Sy Outcom
	Support October
	Shuchismit Jim Follum Eric Anders Jeffery S B
	U.S. DEPARTME
Please er	mail

Data Analysis ynchrophasor Data

es of Research Activities ed by DOE FOA 1861

13, 2022

a Biswas

sen anning

Prepared for the U.S. Department of Energy Under contract DE-AC05-76RL01830

shuchismita.biswas@pnnl.gov to request a copy of the report.

Lead		Partners	Project
PingThir	igs		Combinatorial Evaluation of Phy and Deep Temporal Modeling
GE Rese	earch	GE Grid Solutions	PMU-Based Data Analytics usin PhasorAnalytics Software
Schweitz Laborato	er Engineering pries	Oregon State University	Machine Learning Guided Oper Synchrophasors
Siemens	Corporation	Southern Methodist University, Temple University	MindSynchro
Universit Riverside	ey of California, e	Electric Power Group (EPG), Michigan Technological University	Discovery of Signatures, Anoma Synchrophasor Data with Matrix Recurrent Neural Networks
Universit Reno	y of Nevada,	Arizona State University, IBM, Virginia Tech	A Robust Event Diagnostics Pla Analytics and Machine Learning Monitoring
lowa Sta Science	te University of and Technology	Electric Power Group (EPG), Google Brain, IBM	Robust Learning of Dynamic Int Power System Resilience
Texas A& Experime	&M Engineering ent Station	Temple University, Quanta Technology	Big Data Synchrophasor Monito Resiliency Tracking (BDSMART

ysical Feature Engineering

ng Digital Twin and

ational Intelligence from

alies, and Precursors in x Profile and Deep

atform: Integrating Tensor g Into Real-time Grid

teractions for Enhancing

oring and Analytics for)

Key Outcomes

- Robust data management pipelines
- Event detection and classification algorithms
- Feature engineering approaches
- Large repository of events, synthetic data
- Transfer learning techniques

The performance of proposed approaches may be enhanced by including additional information like topography, SCADA data, outage reports etc.

1.0	Introduction											
2.0	Data Management											
	2.1	Data S	Data Storage									
	2.2 Speeding Up Computation											
3.0	Deve	loped Alg	gorithms									
	3.1	Data C	leaning									
		3.1.1	Bad Data Detection									
		3.1.2	Data Imputation									
	3.2	Feature	e Engineering									
	3.3	Event I	Detection									
		3.3.1	Statistical and Mathematica									
		3.3.2	Commercial Tools									
		3.3.3	ML models									
	3.4	Event (Classification									
	3.5	Suppor	Supporting Tools									
		3.5.1	Automated Labeling Applic									
		3.5.2	Data Visualization Techniq									
		3.5.3	Transfer Learning									
		3.5.4	Synthetic Data Generation									
	3.6	Approaches Requiring Further Rese										
		3.6.1	Oscillation Analysis									
		3.6.2	Data Anomaly Mitigation .									
		3.6.3	Precursor Identification									
4.0	Event Signatures											
	4.1	Identifi	Identified Signatures									
		4.1.1	Frequency Events									
		4.1.2	Oscillation Events									
		4.1.3	Voltage Events									
	4.2	Other E	Events									
50	Conc	lusion										
0.0	0010	addur .										

Contents

																							iv
																							v
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	vi
	•	•	•	•	•			•	•	•		•		•	•	•		•		•	•	•	1
																							3
•			•	•	•	•	•		•	÷	•	•		•	•			•	•		•	•	3
•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	·	•	•	•	•	•	•	3
																							5
																							6
																							6
																							6
										÷													7
																							7
op	oro	ba	c	he	s																		7
																							8
																							8
																							9
																							9
n	5									÷													9
																							10
																							10
																							10
١	ar	۱d	١	/a	lic	la	tic	on															11
																							11
																							12
•					•																		12
																							13
																							13
																							14
																							14
																							15
																							16
•	•			•	•				•												•		19

Algorithms Developed

Data Cleaning

Feature Engineering

Event Detection

Event Classification

Supporting Tools

- Single PMU or multi-PMU implementation?
- Single-channel or multi-channel implementation?
- Can off-the-shelf AI/ML applications be applied directly?
- How to leverage SME knowledge?

Data Cleaning

- Bad data detection:
 - Rule-based methods for statistical outliers, stale values, physically impossible values
 - PMU status bits flag erroneous values
- Imputation:
 - Leverage spatiotemporal correlation
 - Reconstructing archived data
 - Forecasting incoming measurements

Linear regression

Low-rank matrix/tensor completion

Event-participation decomposition model

Attentional LSTM models

Feature Engineering

- Various feature-engineering methods developed that may also find use in other applications
- Statistical and spectral parameters are easier to interpret
- Dimensionality reduction techniques like PCA used to reduce the number of features to be fed to ML models

Event Detection

- Summary statistics are computationally efficient at detecting anomalous data periods, but may not be adequately selective
- Lack of refined labels may necessitate semi-supervised learning
- The proposed algorithms successfully detected thousands of events not documented in the event logs

Event Classification

- One *multi-class classifier* or an *ensemble of binary classifiers*?
- Hierarchical classification: how granular should event classifiers be?
- Popularity of CNN-based architectures

Supporting Tools

Oscillation analysis

Identifying precursors to transformer failures

GPS spoofing mitigation using PCA

Event Signatures

- With the large repository of detected events, signatures and commonalities for different event groups could be identified.
- These signatures helped awardees fine-tune their event detection and classification strategies.
- Confirms many power engineering intuitions, and useful in illustrating expected behavior to data science SMEs without power engineering backgrounds.
- Signatures across interconnections are consistent. Hence, algorithms developed are generalizable.

Event Group
Frequency
Voltage
Oscillation

Event Type

- Loss of generation
- Loss of load
- Line trip
- Transformer trip
- Ringdown
- **Forced Oscillation**

Frequency Events

12

Voltage Events

13

Oscillation Events

Autoreclosure

Some Closing Thoughts

What can AI/ML do with PMU data?

Not yet ready to provide full diagnosis of events and their root causes, but can automate aspects of operator and engineering workflows

- Near-term deployment focus should be on algorithms that-
 - Better filter or highlight information
 - Augment operator memory and knowledge-retrieval, reduce cognitive load
 - Develop trust between humans and tools
- Statistical-feature based methods may be well-suited for such applications. These may also generate good labeled data that can train more sophisticated ML models.

Some Closing Thoughts

Awardee recommendations:

- Fostering discussions in working groups on standardized labeling practices
- Catalogue of data quality signatures
- Data storage formats for high computation efficiency and low memory requirement
- Incorporating algorithms within existing WAMS software platforms
- Utilizing the large repository of events to refine methodologies in existing WAMS platforms
- Other low-hanging fruits: Gen. trip classifiers/ringdown detectors for automatically exporting interesting events to event analysis/model tools, educational tools

- Big data visualization tools
 - Effectively designed interfaces are critical for collaboration between humans and algorithms
 - Large amount of complex information must be conveyed
 - *Must not* increase cognitive burden on operators
- Creation of *golden datasets*
 - Labeled and validated real datasets will help benchmark the performance of proposed algorithms
 - An open-source signature library being compiled by PNNL-ORNL
- Feedback learning/ML as recommender systems
 - Human users can confirm/flag ML predictions, enabling learning in deployment

 Awardee reports and presentations will be listed here: <u>https://www.energy.gov/oe/big-data-synchrophasor-analysis</u>

19

Thank you

shuchismita.biswas@pnnl.gov

PNNL-SA-178557