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Power Systems … Now and in the Future

Future 
residential load

Future wind farm

Present 
Residential load

Substation

Power plant generators

* https://www.eia.gov/todayinenergy/detail.php?id=41533

*
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Characteristics of Sensors Continuously 
Monitoring Electric Power Grid
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Transmission Distribution
SCADA PMU Smart Meter SCADA µPMU/

D-PMU

Spatial Resolution Very dense Becoming dense Dense Sparse Extremely sparse

Temporal Resolution 1 – 5 seconds < 33 milliseconds 1 min – 1 hour 1 – 5 seconds < 16 milliseconds

Latency 2 – 4 seconds < 1 millisecond Few hours to days 2 – 4 seconds < 50 milliseconds

Time-synchronized? No Yes No No Yes

• Time-synchronized measurements will continue to play an important role in the 
high-speed, high-precision monitoring, protection, and control of modern 
power systems!!!

SCADA: Supervisory control and data acquisition PMU: Phasor measurement unit µPMU: Micro-PMU D-PMU: Distribution-PMU



Conventional State Estimation
Backbone EMS Function for Situational Awareness 
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 State Definition [x]: Positive sequence voltage phasors (bus voltage 
magnitudes and angles) of system’s buses 
Measurement Set [z]: From SCADA system
 Voltage magnitude, current magnitude, real & reactive power flows and injections
 Measurement model: Nonlinear  
 Gaussian distribution of measurement error

 Solution Algorithm: Weighted Least Squares
 Iterative Solution

][]])([[][ exhz +=

Biased State Estimation
̶ Unbalanced Grid Operation/System Asymmetries
̶ Measurement Time Skewness
̶ Large Scale Problem/Long Execution Time (30 secs-3 mins)



State Estimation & Synchrophasor Technology

Three-phase measurements
Three-phase formulated State Estimation

Large Scale Problem –
Computationally Demanding 

Unbalanced Operation & 
System Asymmetries

Measurement Time Skewness

Linear State Estimation

GPS Synchronized and Time 
Tagged Phasor Measurements

PMU
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Linear State Estimation
PMU Measurement Based State Estimation
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 State Definition [x]: The same
Measurement Set [z]: From PMUs
 Voltage and current phasors
 Measurement model: Linear
 Gaussian distribution of measurement error

 Solution Algorithm: Weighted Least Squares
 Direct Solution

Can machine learning (ML) help overcome the disadvantages of a 
purely synchrophasor-based state estimation approach??? 

eXHZ += )(

Drawback: Requirement for full system observability from PMUs

PMU Observability



Least Squares Approach vs. Bayesian Approach

Least squares estimation:

Minimizes the modeling error

�𝑥𝑥WLS 𝑧𝑧 = arg min
𝑥𝑥

𝑧𝑧 − ℎ 𝑥𝑥 2

Minimum mean squared error (MMSE) for Bayesian estimation:

Directly minimizes the estimation error

min
�𝑥𝑥(.)

𝔼𝔼 𝑥𝑥 − �𝑥𝑥 𝑧𝑧 2 ⇒ �𝑥𝑥∗ 𝑧𝑧 = 𝔼𝔼(𝑥𝑥|𝑧𝑧)

• Computation of the conditional mean can be exceedingly complex
• The underlying joint distribution of 𝑥𝑥 and 𝑧𝑧 is unknown or impossible

to specify, making the direct computation of �𝑥𝑥∗ intractable
• Deep neural network (DNN) can be used to approximate the MMSE 

state estimator
𝑥𝑥: state variable (voltage phasors)
𝑧𝑧: measurement 8



Schematic of the Proposed Methodology

• Non-time-synchronized data is only used to generate sample data to train the DNN 
(Offline operation)

• Time-synchronized measurements are used in the testing stage (Online operation)

• Does not require complete system observability by PMUs/µPMUs/D-PMUs

Learning PDF* from 
non-time-synchronized 

data

Monte Carlo sampling Generate training 
sample

Train deep neural 
network (DNN)

Optimized DNN 
parameters

State 
estimates

Online Implementation

𝑧𝑧

𝑥𝑥, 𝑧𝑧

*PDF: probability density function

Offline Training

�𝑥𝑥 𝑧𝑧
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Time-
synchronized 
measurements



Least Squares-based State Estimation vs. 
Proposed DNN-based State Estimation1

Classical Least Squares Deep Neural Network
Increased observability is required for better 
online operation

Observability is not needed for online 
operation

Slow online computation time Fast online computation time
Susceptible to non-Gaussian noise in the 
measurements

Relatively immune to measurement noise 
characteristics 

Synchronizing inputs from different sensors is 
a challenge

Issue of incompatible timescales is mitigated 
(non-time-synchronized data is not directly 
used in state estimation)

Accuracy is a function of observability Accuracy is a function of training
Simple to solve Parameter tuning is difficult

10[1] B. Azimian, R. S. Biswas, A. Pal, and L. Tong, “Time synchronized distribution system state estimation for incompletely observed systems using deep learning and realistic 
measurement noise,” in Proc. IEEE Power Eng. Soc. General Meeting, Washington DC, pp. 1-5, 26-29 Jul. 2021. 



Characteristics of Distribution System and DNN
• Deep Neural Network (DNN) Characteristics2:

• 5 Hidden layers – 200 neurons/layer
• ReLU activation function for hidden layers
• Linear activation function for output layer
• Optimizer: ADAM
• Empirical mean squared error loss function
• Separate neurons and layers for each phase

• Distribution System Characteristics:
• Single, double and three phase 

unbalanced Wye-Delta loads
• ZIP load models
• Voltage regulators and transformers
• Single, double, and three phase laterals
• Distributed generation (DG)

11

Distributed loads

Regulator

Transformer

DG

IEEE 34-Node Distribution Feeder

[2] B. Azimian, R. S. Biswas, S. Moshtagh, A. Pal, L. Tong, and G. Dasarathy, “State and topology estimation for unobservable distribution systems using deep neural networks,” IEEE 
Trans. Instrum. Meas., vol. 71, pp. 1-14, Apr. 2022. 



µPMU/D-PMU Placement to facilitate DNN-based 
Distribution System State Estimation (DSSE)
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• Conventional optimal 
µPMU/D-PMU 
placement strategies 
aim for complete 
system observability

• New algorithm is 
proposed that 
enables DNN-based 
DSSE by exploiting 
the correlations that 
exist between the 
input features



Generating Training Database for IEEE-34 Node 
Distribution System
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Mapping 
Data

• To generate realistic loading 
scenarios using Pecan Street data

Perform 
KDE • To fit distribution to loads

Do Power 
Flows • To find voltages and currents

Add Noise • To create realistic 
measurements

KDE: Kernel density estimation

Type of Data #Samples

Training 10,000 (80%)

Testing 2,500 (20%)



DNN-based State Estimation for IEEE-34 
Node Distribution System

Method Phase MAE (degrees) Magnitude MAPE (%) #Nodes
Linear State Estimation (LSE) 0.0194 0.0352 223

DNN-based State Estimation 0.0241 0.0386 3

Method Phase MAE (degrees) Magnitude MAPE (%) #Nodes
DNN with Gaussian Noise 0.0241 0.0386 3
DNN with Non-Gaussian Noise 0.0242 0.0393 3

DNN-based State Estimation Results Under Gaussian and Non-Gaussian Measurement Noise

Results for Linear State Estimation (LSE) and Proposed DNN-based State Estimation*

* When measurement noise is Gaussian

[3] R. S. Biswas, B. Azimian, and A. Pal, “A micro-PMU placement scheme for distribution systems considering practical constraints,” in Proc. IEEE Power Eng. Soc. General 
Meeting, Montreal, Canada, pp. 1-5, 2-6 Aug. 2020. 14

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛�
𝑗𝑗=1

𝑛𝑛

𝑦𝑦𝑗𝑗 − �𝑦𝑦𝑗𝑗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛�
𝑗𝑗=1
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Demonstrating Impact of µPMU/D-PMU 
Placement on DNN-based DSSE Performance
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• Minimum magnitude estimation error was obtained when the three µPMUs/D-PMUs 
were placed in three different clusters

• µPMU/D-PMU placement does not significantly influence angle estimation error as the 
intercorrelations are very high 



Demonstrating High-Speed Tracking 
Ability of the DNN-based State Estimator
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• A trained DNN performs 
a matrix multiplication of 
the input values with the 
weights and biases of its 
neurons – a process that 
can be executed very 
fast

• The DNN took only 0.01 
seconds to produce the 
estimates



DNN-based State Estimation for 240-Node 
U.S. Midwest Distribution System

• System Characteristics4:
• 3 feeders, 240 nodes
• One-year worth of hourly 

smart meter data available
• Overhead lines, under-

ground cables, capacitor 
banks, LTC transformers, 
line switches, and 
secondary distribution 
transformers

• OpenDSS model available
Line monitored by µPMU/D-PMU

[4] F. Bu, Y. Yuan, Z. Wang, K. Dehghanpour, and A. Kimber, "A Time-Series Distribution Test System Based on Real Utility Data," 2019 North American Power Symposium (NAPS), 
Wichita, KS, USA, 2019, pp. 1-6

17

Method Phase MAE (degrees) Magnitude MAPE (%) #Nodes
DNN-based DSSE 0.0081 0.0144 5



DNN-based State Estimation for Transmission 
Systems – Incremental PMU Placement
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• New PMUs added based on two criteria:
• High variability in training dataset

• Distance from existing PMUs

Method Phase 
MAE (°)

Magnitude 
MAPE (%)

#Buses

LSE with 
Gaussian Noise 0.1693 0.9051 325

DNN-SE with 
Gaussian Noise 0.1453 0.1209 13

DNN-SE with 
Laplacian Noise 0.1528 0.1579 13

[5] A. Pal, G. A. Sanchez, V. A. Centeno, and J. S. Thorp, “A PMU placement scheme ensuring real-time monitoring of critical buses of the network,” IEEE Trans. Power Del., vol. 29, 
no. 2, pp. 510-517, Apr. 2014.



DNN-based State Estimation for IEEE 118-
Bus Transmission System (per bus view)
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Red color: Bus locations where PMUs are placed

Blue color: Bus locations where PMUs are not placed 

Evaluation Metric Value

Phase MAE (°) 0.1453
Magnitude MAPE (%) 0.1209



DNN-based State Estimation Under Varying 
Topologies
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• So far, the DNN-based state estimation (DNN-SE) was trained for a given (fixed) topology
• However, if the DNN is tested with different topologies, its performance can deteriorate
• Transfer Learning is the ability to fine-tune a DNN’s parameters for a given change in 

training and testing environment 

Perform DNN-based 
State Estimation

Is current 
topology 

= base 
topology?

Train DNN for 
base topology

Yes

Fine-tune old DNN for the 
new topology using 

Transfer Learning

No Update 
base 

topology

Topology 
Processor



Generating Training Database for IEEE 118-Bus 
Transmission System for Handling Topology Changes 
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Mapping 
Data

• To generate realistic loading 
scenarios using PSSE/PSLF

Perform 
KDE • To fit distribution to loads

Do Power 
Flows

• To find voltages 
and currents

Add Noise • To create realistic 
measurements

• Repeat for 
different 
topologies

Type of 
Data #Samples/Topology #Samples Total

Training 80% (28,000 per 
topology) ≈5M

Testing 20% (4,000 per 
topology) ≈700K



Transfer Learning Results for Different 
Topologies of the IEEE 118-Bus System

22Fine-tuning took ≈ 30 seconds

Evaluation Metric Value

Phase MAE (°) 0.1544
Magnitude MAPE (%) 0.1279

Evaluation Metric Value

Phase MAE (°) 0.1502
Magnitude MAPE (%) 0.1268

Evaluation Metric Value

Phase MAE (°) 0.1490
Magnitude MAPE (%) 0.1258



Bad Data Detection for the DNN-based 
State Estimator
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• Due to the unobservability problem, conventional bad 
data detection and correction approaches are not 
suitable for this DNN-based state estimator

• The use of Wald Test to detect bad data has been 
proposed previously6

where, 𝑄𝑄 𝑥𝑥 = 1
2𝜋𝜋 ∫𝑥𝑥

∞ exp −𝑢𝑢2

2
𝑑𝑑𝑑𝑑

• Bad data is detected when the deviation exceeds the 
threshold set by 𝛼𝛼

[6] K. R. Mestav, J. Luengo-Rozas and L. Tong, "Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning," IEEE Trans. Power Syst., vol. 34, no. 6, pp. 
4910-4920, Nov. 2019.

ℋ0: without bad data
ℋ1: with bad data
𝑧𝑧: 𝜇𝜇0,𝜎𝜎02

𝛼𝛼 Wald Test 𝑧𝑧 − 𝜇𝜇0
𝜎𝜎0

≷ 𝑄𝑄−1 𝛼𝛼/2

Normalized Input Data

Bad Data



Bad Data Correction for the DNN-based 
State Estimator

24[6] K. R. Mestav, J. Luengo-Rozas and L. Tong, "Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning," IEEE Trans. Power Syst., vol. 34, no. 6, pp. 
4910-4920, Nov. 2019.

iefs: indices of entire feature set
ibfs: indices of bad feature set
igfs: indices of good feature set

• 𝛼𝛼 is typically set at 0.05, implying that the false alarm 
(false positive) probability is no greater than 5% 

• Contrary to replacing the bad data by its corresponding 
training data mean6, it is replaced by the operating 
condition (OC) that is closest in the training database

• Furthermore, two types of bad data are investigated:
• Amount of bad data (expressed in terms of variations in 𝜂𝜂)
• Badness of bad data (expressed in terms of variations in 𝜎𝜎)

0 1 2 3 4 5 6
1.04 1.02 1.23 1.06 1.01 0.75 1.05

ibfs

igfs



Impact of Bad Data Correction on DNN-based 
State Estimation Accuracy (Distribution)
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𝜂𝜂 = 30%
𝜎𝜎 = 5 𝜎𝜎0
Angle MAE = 0.1909°
Magnitude MAPE = 0.2552%

𝜂𝜂 = 30%
𝜎𝜎 = 5 𝜎𝜎0
Angle MAE = 4.3055°
Magnitude MAPE = 2.7463%

With correction Without correction

IEEE-34 Node Distribution Feeder



Impact of Bad Data Correction on DNN-based 
State Estimation Accuracy (Transmission)

26• Replacing bad data using the nearest OC results in higher accuracy than replacing using the mean value

Variation in 
amount of 

bad data (𝜂𝜂)

Variation in 
badness of 
bad data (𝜎𝜎)



Summary and Future Scope of Work
• A methodology to perform time-synchronized state 

estimation using deep learning was formulated for systems 
that are incompletely observed by PMUs/µPMUs/D-PMUs

• Different strategies to place PMUs/µPMUs/D-PMUs for 
improving the state estimator’s performance were explored

• Ability to handle topology changes and bad data were 
demonstrated

• Ongoing work:
• Providing robustness guarantees to DNN performance
• Incorporating physics of the system during training data 

generation
• Developing advanced monitoring, protection, and 

control capabilities using the obtained insights
27
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