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Power Systems ... Now and in the Future

The duck curve shows steep ramping needs and overgeneration risk
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Characteristics of Sensors Continuously
Monitoring Electric Power Grid

Transmission Distribution

SCADA PMU Smart Meter SCADA MPMU/
D-PMU
Spatial Resolution Very dense Becoming dense | Dense Sparse Extremely sparse
Temporal Resolution |1—5seconds < 33 milliseconds | 1 min—1 hour 1-5seconds <16 milliseconds
Latency 2 — 4 seconds < 1 millisecond Few hourstodays 2-4seconds <50 milliseconds
Time-synchronized? |No Yes No No Yes

* Time-synchronized measurements will continue to play an important role in the
high-speed, high-precision monitoring, protection, and control of modern
power systems!!!

SCADA: Supervisory control and data acquisition PMU: Phasor measurement unit uPMU: Micro-PMU D-PMU: Distribution-PMU 4



Conventional State Estimation

Backbone EMS Function for Situational Awareness

= State Definition [x]: Positive sequence voltage phasors (bus voltage
magnitudes and angles) of system’s buses

* Measurement Set [z]: From SCADA system
" \/oltage magnitude, current magnitude, real & reactive power flows and injections
= Measurement model: Nonlinear [z]=[h([x])]+][€]
" Gaussian distribution of measurement error

= Solution Algorithm: Weighted Least Squares
" |[terative Solution

Biased State Estimation
p

— Unbalanced Grid Operation/System Asymmetries
— Measurement Time Skewness
— Large Scale Problem/Long Execution Time (30 secs-3 mins)




State Estimation & Synchrophasor Technology

Unbalanced Operation & Three-phase measurements
System Asymmetries Three-phase formulated State Estimation

GPS Synchronized and Time

Measurement Time Skewness Tagged Phasor Measurements

Large Scale Problem — Linear State Estimation
Computationally Demanding



Linear State Estimation
PMU Measurement Based State Estimation
PMU Observability

= State Definition [x]: The same
=" Measurement Set [z]: From PMUs

U Unobservable

o4
I Observable
o

7

= \/oltage and current phasors
" Measurement model: Linear Z=H(X)+e

= Gaussian distribution of measurement error

= Solution Algorithm: Weighted Least Squares /

= Direct Solution

Drawback: Requirement for full system observability from PMUs

Can machine learning (ML) help overcome the disadvantages of a
purely synchrophasor-based state estimation approach???




Least Squares Approach vs. Bayesian Approach

4 N [ )

Least squares estimation: Minimum mean squared error (MMSE) for Bayesian estimation:
Xwis(z) = arg mxin||Z — h(x)]|? r}?l(i_?IE(”x —2(2)|I*) = 2" (2) = E(x|2)
Minimizes the modeling error Directly minimizes the estimation error

e Computation of the conditional mean can be exceedingly complex

L e e L) .o .o L] L] o
L = 10U C 1L |OIT] U (J JI'1 O X dll( [IKTIOWI1 C TI1DU Oll=

x: state variable (voltage phasors)
Z: measurement



Schematic of the Proposed Methodology
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*PDF: probability density function

 Non-time-synchronized data is only used to generate sample data to train the DNN

(Offline operation)
* Time-synchronized measurements are used in the testing stage (Online operation)

e Does not require complete system observability by PMUs/uPMUs/D-PMUs



Least Squares-based State Estimation vs.
Proposed DNN-based State Estimation

Classical Least Squares Deep Neural Network

Observability is not needed for online
operation

Fast online computation time

Relatively immune to measurement noise
characteristics

Issue of incompatible timescales is mitigated
(non-time-synchronized data is not directly
used in state estimation)

Accuracy is a function of training

Simple to solve

[1] B. Azimian, R. S. Biswas, A. Pal, and L. Tong, “Time synchronized distribution system state estimation for incompletely observed systems using deep learning and realistic

10
measurement noise,” in Proc. IEEE Power Eng. Soc. General Meeting, Washington DC, pp. 1-5, 26-29 Jul. 2021.




Characteristics of Distribution System and DNN

e Distribution System Characteristics:

* Single, double and three phase
unbalanced Wye-Delta loads

e ZIP load models

* \oltage regulators and transformers

e Single, double, and three phase laterals
e Distributed generation (DG)
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e Deep Neural Network (DNN) Characteristics?:

e 5 Hidden layers — 200 neurons/layer
RelLU activation function for hidden layers
Linear activation function for output layer
Optimizer: ADAM
Empirical mean squared error loss function
Separate neurons and layers for each phase

Distributed loads

DG

840

@
7

%é Transformer

Regulator

[2] B. Azimian, R. S. Biswas, S. Moshtagh, A. Pal, L. Tong, and G. Dasarathy, “State and topology estimation for unobservable distribution systems using deep neural networks,” IEEE

Trans. Instrum. Meas., vol. 71, pp. 1-14, Apr. 2022.




UPMU/D-PMU Placement to facilitate DNN-based
Distribution System State Estimation (DSSE)

* Conventional optimal Algorithm: pPMU/D-PMU Placement for DNN-based DSSE

uPMU/D-PMU Inputs: Budget, DSSE.ccuracy, COTTThreshold, Number of nodes = M
placement strategies Output: Location of the pPMUs/D-PMUs
aim for COmp|Ete A-]:--_ Nejuster = 1 _ _ _
system observability An Calculate correlation coefficient between each voltage phasor 1—’:-}}{ Vi E
{A,B,C}L V] € {mag, ang}, & Vk,l € {1, ..., M}

* New algorithm is A If correlation coefficient Yk, [ € {1, ..., M} is greater than Corrrhreshold
proposed that for Vi € {4, B,C} & V] € {mag, ang} then go to (A vi1.)
enables DNN-based AV Nowster = Netuster + 1 N |
DSSE by exploiting Av. :tlluster e;?ich correlation coefficient matrix for Vi € {4,B,C} & Vj €

: mag, ang

the correlations that Avi Find common node in each cluster for each correlation coefficient and
exist between the place pPMU/D-PMU on this node.
input features Avit.  If DSSEaccyracy 18 satisfied or uPMU/D-PMU mstallation cost = Budget,

then End. else go to (A.av.)




Generating Training Database for IEEE-34 Node
Distribution System

\EToJellal<88 * To generate realistic loading
DR scenarios using Pecan Street data
Perform
e To fit distribution to loads

Do Power ,
e To find voltages and currents
Flows
. e To create realistic
Add Noise
measurements

KDE: Kernel density estimation 13

Type of Data #Samples

Training 10,000 (80%)
Testing 2,500 (20%)




DNN-based State Estimation for IEEE-34
Node Distribution System

Results for Linear State Estimation (LSE) and Proposed DNN-based State Estimation*
M
Linear State Estimation (LSE) 0.0194 0.0352
DNN-based State Estimation 0.0241 0.0386 3

* When measurement noise is Gaussian

DNN-based State Estimation Results Under Gaussian and Non-Gaussian Measurement Noise

Method | Phase MAE (degrees)  Magnitude MAPE (%)

DNN with Gaussian Noise 0.0241 0.0386
DNN with Non-Gaussian Noise 0.0242 0.0393 3
MAPE = nzy’y—]y’ MAE:%i|yj—yj|

[3] R. S. Biswas, B. Azimian, and A. Pal, “A micro-PMU placement scheme for distribution systems considering practical constraints,” in Proc. IEEE Power Eng. Soc. General

Meeting, Montreal, Canada, pp. 1-5, 2-6 Aug. 2020. 14



Demonstrating Impact of uPMU/D-PMU
PIacement on DNN-based DSSE Performance

Phase A voltage magnitude estimation error Phase A voltage angle estimation error
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 Minimum magnitude estimation error was obtained when the three uPMUs/D-PMUs
were placed in three different clusters

e uPMU/D-PMU placement does not significantly influence angle estimation error as the
intercorrelations are very high



Demonstrating High-Speed Tracking

Ability of the DNN-based State Estimator

e A trained DNN performs

117.5
a matrix multiplication of
the input values with the g 117
weights and biases of its Eﬂ s
neurons —a process that 5
&b
can be executed very S 116
fast 2
= 115.5

 The DNN took only 0.01
seconds to produce the
estimates
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DNN-based State Estimation for 240-Node
U.S. Mldwest Distribution System

:‘% - 3 = . f.-_”.”“f e System Characteristics*:
el * 3feeders, 240 nodes

e One-year worth of hourly
smart meter data available

e (Qverhead lines, under-
ground cables, capacitor
banks, LTC transformers,

e line switches, and
- secondary distribution

transformers
e OpenDSS model available

+... [ Line monitored by uPMU/D-PMU

M Phase MAE (degrees) | Magnitude MAPE (%)
DNN-based DSSE 0.0081 0.0144

[4] F. By, Y. Yuan, Z. Wang, K. Dehghanpour, and A. Kimber, "A Time-Series Distribution Test System Based on Real Utility Data," 2019 North American Power Symposium (NAPS),
Wichita, KS, USA, 2019, pp. 1-6

o= .6— RPN P ..:._.‘ e ..
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DNN-based State Estimation for Transmission

Systems — Incremental PMU Placement

e New PMUs added based on two criteria:

. . o . . . 3 lé@l_ll 1117 33 _39 &l IGU>I 4\1 @ ®I ] @
* High variability in training dataset %ﬁn enlie o e T b{
{, 4(»| C — TT12 _ 13! 1 37 7'43 N 3 . .
e Distance from existing PMUs ’ T @ﬁ e @ SE T sl L: 1+ 'O
8@ i ‘ \ISI 19 || | 34" 3-8 - 49 3 ’—\ 63 L]
9 g o8 2 fo
E- T I E: — — | (& L
Phase | Magnitude | #Buses 5-@&"}: n— o) @ e o
MAE (°) | MAPE (%) 39 » T %@ .638:-“. : lepl o
LSE with s ca |1 s i in T O RTA-EYC
, 01693  0.9051 ol A SIS T L) e ko
Gaussian Noise — © A ) R e v [ i s
e O ek e ) [
DNN-SEwith 1 /c3 0.1209 13 | - L
Gaussian Noise ' @T 105 = Q) =9 gf o O
DNN-SE with ' = )| G s I P B s
0.1528 0.1579 13

Laplacian Noise

[5] A. Pal, G. A. Sanchez, V. A. Centeno, and J. S. Thorp, “A PMU placement scheme ensuring real-time monitoring of critical buses of the network,” IEEE Trans. Power Del., vol. 29, 18

no. 2, pp. 510-517, Apr. 2014.



Voltage Magnitude Error (MAE)

DNN-based State Estimation for IEEE 118-
Bus Transmission System (per bus view)

Voltage Angle Error (MAE)
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Bus number

Red color: Bus locations where PMUs are placed

Blue color: Bus locations where PMUs are not placed
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0 20 40 =0 a0 100 120
Bus number
Evaluation Metric
Phase MAE (°) 0.1453

Magnitude MAPE (%) 0.1209
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DNN-based State Estimation Under Varying
Topologies

e So far, the DNN-based state estimation (DNN-SE) was trained for a given (fixed) topology
 However, if the DNN is tested with different topologies, its performance can deteriorate

e Transfer Learning is the ability to fine-tune a DNN’s parameters for a given change in
training and testing environment

Perform DNN-based
State Estimation

Yes

Train DNN f No Fine-tune old DNN for the Update
b;asztopobg; > new topology using > base
Transfer Learning topology
Topology

Processor 20




Generating Training Database for IEEE 118-Bus
Transmission System for Handling Topology Changes

V/ETJOalsf8 o To generate realistic loading
Data scenarios using PSSE/PSLF
Perform
e To fit distribution to loads
DISNOIVIEIE o To find voltages e Repeat for
Flows and currents different
topologies

. e To create realistic
Add Noise
measurements

21

T‘[,)pi 2 #Samples/Topology | #Samples Total

80% (28,000 per
Training
topology)
(o)
Testing A2 [F00D [ =700K

topology)



Voltage Angle Error (MAE)

‘Voltage Magnitude Error (MAE)

Transfer Learning Results for Different
Topologies of the IEEE 118-Bus System
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Magnitude MAPE (%) 0.1258
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Bad Data Detection for the DNN-based

State Estimator

e Due to the unobservability problem, conventional bad
data detection and correction approaches are not
suitable for this DNN-based state estimator

e The use of Wald Test to detect bad data has been
proposed previously®

Hy: without bad data —

a Wald Test Ho _
H,: with bad data o 2 Q0 ' (a/2)
Z: o, 05

where, Q(x) = \/%_nfxoo exp (— u?z) du

e Bad data is detected when the deviation exceeds the
threshold set by

fi'x)

fix)

0.3

0.2

0.1

0.0

0.04

0.03

0.02

0.01

0.00

Normalized Input Data

Bad Data

-20

p=EX)=4

0

g = SD(X)

X

10  &* = Varl

20

[6] K. R. Mestay, J. Luengo-Rozas and L. Tong, "Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning," IEEE Trans. Power Syst., vol. 34, no. 6, pp.

4910-4920, Nov. 2019.
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Bad Data Correction for the DNN-based
State Estimator

e « is typically set at 0.05, implying that the false alarm mesutoment el
(false positive) probability is no greater than 5% S .
Conduct Wald test
e Contrary to replacing the bad data by its corresponding | Fegbascma
training data mean®9, it is replaced by the operating v

[ Find (ibfs) (using flagged bad data) ]

condition (OC) that is closest in the training database

Y

—> igfs 3 [ Set(igfs) = Set(iefs) - Set(ibfs) ]

Y

[ m = arg min|| Xyain [k, igfs] — Xiest [igfs]|| ]
k

—» ibfs «———

0 1 2 3 4 5 6

1.04 1.02 1.23 1.06 1.01 0.75 1.05 - Y .
[ Xiest [ibfs] = Xipain|[m, ibfs] ]

| the samples in the
test set over?

No

e Furthermore, two types of bad data are investigated:
 Amount of bad data (expressed in terms of variations in 1) lefs: indices of entire feature set
ibfs: indices of bad feature set
* Badness of bad data (expressed in terms of variations in o) | End | - 1gfs:indices of good feature set

[6] K. R. Mestay, J. Luengo-Rozas and L. Tong, "Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning," IEEE Trans. Power Syst., vol. 34, no. 6, pp.
4910-4920, Nov. 2019.
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Impact of Bad Data Correction on DNN-based

State Estimation Accurac
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Replacing bad data using the nearest OC results in higher accuracy than replacing using the mean value 26



Summary and Future Scope of Work

A methodology to perform time-synchronized state
estimation using deep learning was formulated for systems
that are incompletely observed by PMUs/uPMUs/D-PMUs

e Different strategies to place PMUs/uPMUs/D-PMUs for
improving the state estimator’s performance were explored

e Ability to handle topology changes and bad data were
demonstrated
 Ongoing work:
e Providing robustness guarantees to DNN performance

 Incorporating physics of the system during training data
generation

e Developing advanced monitoring, protection, and
control capabilities using the obtained insights
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