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WESTC Small Signal Stability
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e Oscillations must remain well-damped for
small-signal stability

e Either sustained oscillations or growing
oscillations called small-signal instability

e Caused by unusual operating conditions or
poor control designs

e Some eigenvalues become negatively damped
resulting in small signal instability

e IBRs influencing grid dynamics and can cause
subsynchronous oscillations
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(e Pendulum Example
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Positive damping

Oscillations damp out
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WESTC Oscillations Terminology

& UNIVERSITY
a8

* Oscillations: Unintentional periodic exchange
of energy across power system components
* Damped Oscillations
= Well-damped or poorly damped?

* Undamped oscillations

* Problematic, Causes rotor fatigue, Power
quality issues, blackout

* Forced Oscillations: Can interfere with
system modes, interarea resonance
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ESTC Well-damped oscillations
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eslc Well-damped Response
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Eslc Poorly Damped Oscillations
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s Poorly Damped Oscillations
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ESTC Local oscillations
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ESTC Sustained oscillations
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1 Hz Governor oscillations caused by a faulty valve
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ESTC Inter-Area Oscillations
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Eslc Power System Dynamics
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Generators, renewables, and controls
interacting across the system
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Eslc Subsynchronous Oscillations
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Power electronic controls in renewables
interacting with the power grid
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WESTC Linearization
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System stability model

d.
i = f(x, y) Generator Dynamics
dt
0 =g(x,y) Power-flow Equations
Equilibrium point Small-signal model
0 =/(xp) d(Ax) A
0 =g(x,) a1
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s Modal Response
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Eigenvalue or Mode A; = -o; + j B; Modal time-response

+ """"""" Bi

(N

e “" cos(fit+ @)

Mode frequency =3,/ 2w
Mode damping ratio = o,/ ®,;

How fast does it damp out?
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* Thousands of oscillatory modes in a power
system

* Damping ratio of every mode should be above
5% or 0.05

* Well-damped mode responses “not seen”
* Damping from 0% to 5% gives poorly damped
oscillatory responses

* Damping below 0% results in growing or
undamped oscillations
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TS Modal Properties
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* Eigenvalue or Mode A, = -o,, + j B
* Mode frequency
* Mode damping ratio

* Mode shape — which generators are swinging
and how? (right eigenvector)
- local mode (one generator/plant)
- intra-area mode (several generators in one
control area)
- inter-area mode (generators across many
control areas)
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WESTC Well-known WECC modes
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°* 0.25 Hz North-South inter-area mode

°* 0.37 Hz North-South inter-area mode

* Eastern interconnection, 0.25 Hz, 0.4 Hz,
0.5Hz, 0.6 Hz, 0.7 Hz, ...
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WESTC August 10, 1996 blackout
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WESTC Measurement Based Analysis
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Ambient Modal Analysis

&

\ %

0.1] <—> 0.4 Hz at +10% damping. Inter-Area Mode.
Event Modal
o Analysis
"~ 0.4 Hz at +10% damping. Inter-Area Mode.
09:14:10 09:15:00 09:15:50 09:16:40

© Washington State University 20



WESTC Oscillation Monitoring
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Read data
from PDC
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Engine * * Engine
Moving window Moving window
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| |
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mode detected? —] Controller trigger
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Oscillation Monitoring System

IEEE C37.118

Real-time PMU
data stream

SIEGate

Oscillation
Monitor

I openPDC |

|

OpenHistorian

OMS results

e

Calculated

measurements

OMS action adapters built into OpenPDC platform.
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WASHINGTON STATE Complementary Engines
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® Event Analysis Engine (EAE)
o Multiple algorithms

- Prony, Matrix Pencil, HTLS, ERA, MFRA, METRA.
- Aimed at events resulting in sudden changes in
damping
® Damping Monitor Engine (DME)
- Ambient noise based. Continuous. Provides early
warning on poorly damped modes.
- Several algorithms

- Fast Frequency Domain Decomposition (FFDD),
Fast Stochastic Subspace Identification (FSSI),
DFDO, Recursive Adaptive Stochastic Subspace
Identification (RASSI), DFDD, RFDD, DRSSI, WSD
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WESTC Ambient Modal Analysis
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= Ambient noise based. Continuous. Tracks
damping of modes online.

= Provides early warning on poorly damped modes.
= Time-domain algorithms:

A Fast Stochastic Subspace Identification (FSSI-Covariance)
= Frequency-domain algorithms:

A Fast Frequency Domain Decomposition (FFDD)
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WO ST Mathematical Model
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* Power system is a high-order nonlinear time-invariant

system

* However, for small perturbations, power system can be
modeled as a Linear Time-Invariant (LTIl) system for short

periods of time

Random load
variations
modeled as
white noise
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Power System
modeled as
LTI system

Measured
outputs, e.g.
voltage
magnitudes
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WEST(; Frequency Domain Decomposition
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esfc August 10, 1996 WECC Event
Vghaask®  Modal Estimates from PMUs
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SSI
analysis:
0.25 Hz COI
mode
damping
moved from
positive to
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as event
progressed.
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ESIC  Event (Ringdown) Analysis
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ESTC Mathematical Model
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* The response after small disturbances can be expressed as the sum of
exponential terms

Ay, (s) _ Zn: R,
Au(s) ‘T s—4

= Transfer function G, (s) =

where R; = c;p;¥;b. @, and v, are the right and left eigenvectors.

= Impulse response JV; (1) = ZRi exp(4,?)
i=l1

* Sampling at constant period (k) = ZRiZk where z. = exp(1.At)

I
i=1
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Eslc Ringdown Analysis
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* Algorithms for ringdown event analysis
* Prony’s Method
= Matrix Pencil Method
* Hankel Total Least Square (HTLS)
= Eigenvalue Realization Algorithm (ERA)
= MFRA, METRA

* To verify linearity, crosscheck results from
multiple engines and multiple time-windows.
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June 17, 2016 Oscillation Event
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June 17, 2016 Oscillations
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June 17, 2016 Oscillations
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0.28 Hz Oscillation Shape
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FFDD Power Spectrum @ 3:01 AM (Before)
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Power Spectrum @ 3:15 AM (During)
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FSSI Estimates During Event (3:13 to 3:17)
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0.3 Hz North-South Mode from FFDD

ModeShape of the Mode @ 0.298 Hz - 6/17/2016 3:00:00 AM to 3:05:00 AM
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0.28 Hz Oscillation Mode Shape
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Resonance with Inter-area Mode

Resonance effect high when:
(R1) Forced Osc freq near System Mode freq
(R2) System Mode poorly damped

(R3) Forced Oscillation location near distant ends (strong
participation) of the System Mode

Resonance effect medium when some conditions hold
Resonance effect small when none of the conditions holds

S. A. N. Sarmadi and V. Venkatasubramanian, "Inter-Area Resonance in Power Systems From Forced
Oscillations," in IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 378-386, Jan. 2016.

S. A. Nezam Sarmadi, V. Venkatasubramanian and A. Salazar, "Analysis of November 29, 2005
Western American Oscillation Event," in IEEE Transactions on Power Systems, vol. 31, no. 6, pp.
5210-5211, Nov. 2016.
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vamom:  Nodal Amplification Factors

@ [UNIVERSITY
&

- +
‘w,:rb‘ +
Ai| = —= : -
\/al +((1) ﬁl) + 4
+ ¢

= W, b = Strong controllability (R3)
. w = [f; = Close frequencies (R1)

= a; small = Poor damping (R2)

Y. Zhi and V. Venkatasubramanian, "Interaction of Forced Oscillation With Multiple
System Modes," IEEE Trans. Power Systems, vol. 36, no. 1, pp. 518-520, Jan. 2021.
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Resonance Conditions

(R1) Forced Osc freq near System Mode freq (close)
* 0.28 Hz Oscillation versus 0.3 Hz Mode

(R2) System Mode poorly damped (invalid)
* 0.3 Hz Well-damped (10% Damping Ratio)

(R3) Forced Osc location near the two distant ends (strong
participation) of the System Mode (true)

* Mississippi Sensitive Location for the Mode
Only 1+ conditions valid: Resonance effect small.

NERC =«
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June 17, 2016 Event Summary

0.3 Hz Eastern Interconnection Mode has a
complex mode shape: North-South-East-West

Oscillation source in Mississippi was a
sensitive location for the 0.3 Hz Mode

Oscillation frequency 0.28 Hz slightly off

0.3 Hz System mode well-damped (excellent)

Resonance effect was mild
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Bttt Research Questions
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* How to distinguish between forced responses
and natural responses?

* Source of forced oscillations?

* Subsynchronous oscillations (SSO) from
power electronic controls? Resonance?

* Mitigatory operator/control actions for low
damping conditions and forced oscillations?

* Impact of renewables on inter-area modes?
* Synchronized point-on-wave measurements
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