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Machine Learning in Power Sector

Machine learning has demonstrated its
success in many domains such as
Healthcare, transportation, etc.

In energy field, its impact is everywhere
- Smart grid: managing integration from
wind/solar with traditional power
generation.
- Failure management: prognosis of
failures save money, time, and lives.
- Energy consumption: supply/demand
forecasting.
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Model Parameters Verification and Calibration

Motivation

> Inaccurate model can cause catastrophic consequences
> Current practice in the field is costly and doesn’t meet the need

Current Practice

Staged-test method (Common):
* Testing can cost $15,000-S35,000 per generator per test in the United State.
 Canonly be run on a limited set of devices - Heavily rely on expert engineers.

Disturbance based approach:
* Low cost, no need to take the generator offline

* Can be widely applied for online model verification NERC guideline not to

rely solely on the current

disturbance-based
Current issue and gaps in existing tools (numerical methods ): methods without

- Parameter tuning is an ill-posed inverse, non-uniqueness (multiple solutions), and engineer judgment!
thus these methods need more than one event to be reliable.
- Slow with the number of parameters increases.

ﬁr The University of Vermont



Research Objectives
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Introduce machine learning

methods for model calibration

that:

- More reliable.

- Need less engineering
intervention.

- Scalable.

More reliable 0 near well-posed solution giving a single or few number of events.

Need less engineering intervention 0 No need for deep knowledge for calibration.

Salable 0 Can work on wide range of synchronous or inverter-based models.

ﬁﬁﬂ]e University of Vermont



Research Objectives — Phase 1

We investigated different bus systems (IEEE-14,
i IEEE-39 and WECC-179), deep learning models

Owoo.oo I 100.00 <3 - -100.00 40.00 4000 | 4000 -40.00 32.86R .
S R LIy (CNN, LSTM, GRU ) and synchronous machine

15.11

models (GENCLS and GENROU).

We showed that:

- Deep Learning has the capacity to calibrate
synchronous machine models even for large bus
Data N systems.
([ Eovosimenna - CNN based models are the best.

Max-Pool Convolution Max-Pool Dense Dense

But we still need to:
- Work on real data (practical solution).

m The Achieved MSE error on - Scale on large and different bus systems
testing set of 0.0610 (scalable solution).

' ' Wshah, S., Shadid, R., Wu, Y., Matar, M., Xu, B., Wu, W., Lin, L. and Elmoudi, R., 2020, September. Deep Learning for Model Parameter Calibration in Power
% Systems. In 2020 IEEE International Conference on Power Systems Technology (POWERCON) (pp. 1-6). IEEE.
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Research Objectives — Phase 2

Work on real data (practical and reliable solution) and scale to large and different bus
systems (scalable solution).

Example
Mechanical System(—i—)Electrical System
| Stabilizer Load Machine GENROU
i Line Models (51)
H - Relay
I Exciter Relay
i Exciter Model | ESST1A
Supply Pressure Speed I \oltage Network Load (122)
control control control 1 Control control control
1 e
. Turbine Generator Network [—»( Loads Model (36)
Source and Boiler
Machine Load
Char. Governor GGOV1
Fuel Steam Torque v, I P Q Model (82)
Governor

- Can data-driven approaches from a single or few events reliably calibrate model parameters ?
TE - Can data-driven approaches model large number of different types of models ?

| w7 The University of Vermont



Proposed approach

O,

Real event

__________ Models

Generators |

Governors @
Stabilizers S:::Ii;isvii;y
Exciters

A 4

Generic Deep Learning
(GDL) model trained from
simulated events and
random model parameters
using playback approach

Estimated
Parameters

O,

A

GDL Finetune

A 4

Data generation for
random model

parameters within 25%

of the estimated
parameters

O,

e Data will be generated offline for any model combinations using PSSE.
* A generic deep learning model will be trained.
* The generic model can be finetuned from real events.

éw The University of Vermont
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Use Case

47639
Generator 1 | GENROU, PSS2A, ESST1A, GGOV1 'gi O
PLAYBACK
Generator 2 GENROU, PSS2A, ESST1A, GGOV1 |
O | 47640
Generator 3 GENROU, PSS2A, ESST1A .4 g O
47641
3 g Q
® \We used real case events and structure. 3

® Our objective is to calibrate “Generator 1”.
e Total number of parameters for “Generator 1” is 82 parameters. This includes
governor, generator, stabilizer and exciter.

é‘ The University of Vermont



Sensitivity Analysis

> Sensitivity analysis can be performed to identify key parameters that should be

considered for calibration [§].
> The sensitivity analysis results quantify the change in the generator response for change

in each parameter [9].
> The standard models used are GENROU, ESST1A GGOVI, and PSS2A (82 parameters in

total).
> Based on the sensitivity analysis, 13 sensitive parameters are used for calibration.

Where:

1 ry —x
S(-‘_’E} = — E ‘ 1 2 (1) a0 is the initial value of parameter a;
T _ &’-—“O Aoa0 is a small perturbation of a0;
x1 and x2 are the time responses obtained using al and a2, respectively;
n is the total number of time steps.
] = p + A&'o (2] S(a) is the derived parameter sensitivity metric.

oo = a, — Aay,

& Ning, A. (2017, July). An innovative software tool suite for power plant model validation and parameter calibration using PMU measurements. In 2017 IEEE Power & Energy Society General Meeting (pp. 1-5).

[8] Li, Y., Diao, R., Huang, R., Etingov, P., Li, X., Huang, Z, ...
& Zhao, J. (2018). Calibrating parameters of power system stability models using advanced ensemble Kalman filter. IEEE Transactions on Power Systems, 33(3), 2895-2905.

[9] Huang, R., Diao, R., Li, Y., Sanchez-Gasca, J., Huang, Z., Thomas, B., ...
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Sensitivity Analysis

Sensitivity Analysis of ESST1A Model
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% Fig. Sensitivity Analysis of Active power and Reactive power to ESSTIAmodel parameters.
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Sensitivity

Sensitivity Analysis

Sensitivity Analysis of PSS2A Model
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Fig. Sensitivity Analysis of Active power and Reactive powerto PSS2Amodel parameters.
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Sensitivity Analysis

The most sensitive parameters are:
Generator model

T _prime_do, Xd, S1_point_2, H,
X_double_prime_d

Stabilizer model :
TW1, TW2, KS1, KS3

Exciter model :
KA, TB, TC, TC1

@Tbe University of Vermont
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Fig. Sensitivity Analysis of Active power and Reactive power to GENROU model parameters.

Sensitivity Analysis of GENROU Model
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Data generation

* Event playback applies Voltage, freq measurements to a sub-system model and simulates the
model’s response.

Voltage ey _ Remainder of
p—— ACtive POwer

Power system Model

Event
Frequency == Playback (externa) Calibration
r—) Reactive Power A\_ Subsystem model for validation
Generator —p
Model * Measured V, /8 9 Simulated P,Q } 2
\ ) Playback Measured P,Q J ==

Fig. Concept ofevent playback [10][11].
* Organization and normalization of the data.

O . dd OO . dd Oood o oo oo, 0o 0o . Odd
\\ J \\ /L /L J \ J/
Y Y Y Y Y
Voltage Frequency Active Reactive Generator

Power Power Model

* 100k training data samples have been generated from simulated events at different model parameters.

[10] Akhlaghi, S., Raheem, S., & Zhou, N. (2020, August). Model validation lessons learned through implementing NERC MOD-033-1. In 2020 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5).
[11] Li, Y., Diao, R., Huang, R., Etingov, P., Li, X., Huang, Z., ... & Ning, A. (2017, July). An innovative software tool suite for power plant model validation and parameter calibration using PMU measurements. In 2017 IEEE Power & Energy Society General Meeting (pp. 1-5).
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Training generic deep learning model

Voltage 1l 1 (I iwase
| Ir|" . I: Cvopout (rate=0 3]
'| | ,” Dropont (rate =0 7
Estimated . | .
Frequenc ‘ e I o e e
9 y parameters

CNN
Active / (Convolutional Neural

P
oWer / Network)
Reactive , T

Power

* We investigated the most common Recurrent Neural

Network (RNN) architectures, Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) in addition to
Convolutional Neural Network (CNN) and WaveNet

* We benchmarked the deep learning architectures by training

and testing on same data.

* We found out that WaveNets is the best architecture for the
calibration problem.

ér The University of Vermont



Fine tuning

1 Training generic model from scratch

Data, 100k Generator Model
[ (Vs, Fs, Ps, Qs) [ Neural Network [ Parameters ]

Voltage g
Actiue power -------------------------------------------
S't - _ - "

Frequency PIE;T:r;::k 2 1** Fine-tune of the generic model based on the given event

e Reactive Power B
GENErator ey Mew Data, 6K , Generator Model
Model * Pre-trained NN >

(Vs, Fs, Ps, Qs) ) Parameters
e/

3 Calibration of the generator model initially

* From the real event, we [ (Vr, Fr, Pr, Qr) ]—{ 1st Fine-tuned NN ]—-| Initial Model Parameters |

used same V,F to generate
different P,Q for different
model parameters.
 we fine-tuned our generic [ {Tf‘:’-ﬁa;fri‘} ]__.[ 1% Fine-tuned NN ]_.[ Gﬂgﬁ;iﬂsdﬂ ]
NN using these events. —
* we used the real V,F, P,Q to
estimate the final

parameters. [ (vr, Fr, Pr, Qr) ]—5[ 27 Fine-tuned NN ]—~| Calibrated Model Parameters |

4 2™ Fine-tune of the generic model based on the given event

5 Calibration of the generator model

> The University of Vermont



Results — Simulated Events

Parameters Original Event1 APE Event2 APE Event3 APE Event4 APE  Event5 APE
T'do 10 10.04 0.40  9.380 200 9.73 270 9.68 3.20 9.90 1.00
H 5.712 5.70 021 573 032 563 144 565 1.09 5.71 0.04
Xd 1.9 1.79 579 189 053 193 1.58 199 474 1.90 0.00
X"d 02 0.19 500 021 500 020 0.00  0.18 10.00 020 0.00
S1.2 (.398 (.38 452 040 0.50 040 0.50 039 2.01 0.39 2.01
TWI 10 9.99 0.10  10.12 .20 10.19 1.90 1031 3.10 10.08 0.80
TW2 10 10.12 1.20 9.86 1.40 993 0.70  9.86 1.40 10.00 0.00
KS3 1 1.01 1.0 1.00 0.00  1.00 0.00  1.00 0.00 1.00 0.00
KS1 30 30.45 1.50 2971 0.97  29.76 0.80  29.67 1.10 29.56 1.47
TC 5 484 320 496 0.80  4.80 400 486 2.80 4.90 2.00
TB 40 38.62 345  40.14 0.35 39.22 1.95  39.00 2.50 39.28 1.80
TCl 1 1.01 1.00 0.99 1.00 098 200 1.00 0.00 0.99 1.00
KA 300 293.19 227 29297 234 29993 002 29548 1.51 300.28  0.09
MAPE [%] 2.28 1.26 1.35 2.57 0.79

The University of Vermont

Five different simulated
testing events are used
to test our approach.

All of them reached
almost same results
within (1.65 +0.55) %.

Our approach doesn't
need initial parameters
and all of them almost
landed to the same
answer!



Results — Real Events

Calibrated Parameters

Calibrated Parameters

e using Real Event 1 using Real Event 2 APE

" T'do 91816 8.7749 44300 |
H 5.6998 5.6690 0.5396
Xd 2.0569 2.0835 1.2920
X°d 0.2195 0.2213 0.8030
S1.2 0.4036 0.4003 1.4256
TWI 11.2015 11.7405 48119
TW?2 8.3566 8.2632 1.1174
KS3 0.9419 09011 43366
KS1 28.0161 26.7830 44011
TC 46415 47174 1.6363

- TB 38.7362 36.8661 48278
TC1 1.1521 1.1727 1.7836
KA 300.6068 300.0199 0.1952
MAPE 2.4308

@The University of Vermont

- Two real events used to validate our approach.
- The two events reached almost to the same

results with a difference of 2.43%

Table 111: RMSE values of the real and reactive power.

RMSE P (MW) Q (MVar)

Evenis Before | Afier Before Alier
Event 1 0.1702 | - 04113
Event 2 0.1827 0.4983
Event 3 0.1869 | - 0.3830)
Event 4 0.2275 (0.3353
Event 5 - 0.2020 | - 0.2606
Real-event 1 1.728 1.7159 | 4.8826 | 4.4795
Real-event 2 | 4.5737 | 4.5538 | 52456 | 5.0796
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Conclusion and future work
> Qur research showed that Deep Learning can be used for power systems
calibration with high accuracy from a single event.
> Model can be trained offline from simulation then fine-tuned for real-events.
> More work is needed to:
O Generalize the training for the generic models.

O Investigate more accurate deep learning approaches.
o Extend the work to inverter-based models.

il
é‘ The University of Vermont
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