

PNNL-SA-159884

Synchrophasor Cybersecurity for Grid Operations

February 24, 2021

Scott R. Mix, CISSP Grid Cybersecurity Specialist, PNNL

PNNL is operated by Battelle for the U.S. Department of Energy

- Uses of Synchrophasor Data
- Overview of Cybersecurity for Operational Technology
- Cybersecurity Controls
 - Applications to Synchrophasor environments

2

Uses for Synchrophasor Data

- Operator Situational Awareness
- Alarming
- Frequency Stability Monitoring
- Voltage Stability Monitoring
- Island Detection
- Linear State Estimator
- Oscillation Detection
- Disturbance Monitoring
- Postulated Preventative Actions
- Control Applications e.g., Static and Dynamic Remedial Action Schemes (RAS)

- Automatic RAS Arming
- Out of Step Protection
- Stability Controls (Transient, Voltage, Frequency)
- Fault Location
- Equipment Performance and Maintenance Monitoring
- Model Validation
- Forensic Disturbance Analysis
- Restoration
- Adaptive Protection

- Synchrophasor data is being used in real-time control applications and situational awareness
- Synchrophasor data use is functionally very similar to existing Remote Terminal Units (RTU) telemetry data in real-time analytical and protection applications
- Resource utilization for non-real time uses
- Operational decisions made using synchrophasor data expect the data to be available and correct
- Phasor Measurement Units (PMUs) and synchrophasor data should be protected in the same manner as telemetry RTUs, protection and control relays, or other sources of data

- Focus on protecting "information"
- Apparent preference for confidentiality
- Data has long life

Operational Technology (OT) Cybersecurity View

Integrity

- Focus on protecting the "process" and its associated data
- Data often publicly available or easily obtained
- Data often has short life

Availability

6

Sources for Cybersecurity Controls

- Standard and Recommended practices are available from a number of organizations:
 - IEC International Electrotechnical Commission
 - ISO International Standards Organization
 - ISA International Society of Automation
 - NERC North American Electric Reliability Corporation \checkmark CIP – Critical infrastructure Protection standards
 - NIST U.S. National Institute of Standards and Technology
 - ✓ SP 800 Special Publication series 800
 - ✓ NISTIR NIST Interagency or Internal Reports

Sources for Cybersecurity Controls

- ISO/IEC 27k family, specifically 27001, 27002, 27019
 - ISO/IEC 27001 and 27002 are general IT controls, but portions can be applied to OT systems
 - ISO/IEC 27019 contains controls and control modifications specific to process control systems in the energy industry
- NIST SP800-53 and SP 800-82
 - SP 800-53 contains general IT controls
 - SP 800-82 applies the 800-53 controls to OT systems
- NISTIR 7628 Rev. 1
 - Guidelines for Smart Grid Cyber Security
- ISA/IEC 62443 (formerly ISA-99)
 - Primarily for industrial control systems like those found at power plants
- NERC CIP
 - High level, few implementation specifics
 - Required* on transmission-level equipment for North-American utilities
 - * if the PMUs are designated as BES Cyber Assets

applied to OT systems rocess control

Recommendations based on ISO/IEC 27k and Pacific **NERC CIP**

- ISO/IEC 27k standards are the international standard for information security
 - Primarily focused on Information Technology (IT) security
 - ISO/IEC 27019 (2017) provides extensions for the energy utility industry
 - ✓ Additional guidance on controls specified in ISO 27002 (marked with "+")
 - \checkmark Additional controls specific to energy utility industry (marked with "*")
- Initial NERC CIP concepts (in 2002) were based on ISO 17799, which is now the ISO 27000 family

High-level Security Objectives in 27001/27002

- Information Security (Cybersecurity) Policies
- Organization of Information Security (Cybersecurity)
- Human Resource Security
- Asset Management
- Access Control
- Cryptography
- Physical and Environmental Security
- Operations Security

- Communications Security
- System Acquisitions, Development, and Maintenance
- Supplier Relationship
- Information Security (Cybersecurity) **Incident Management**
- Information Security (Cybersecurity) Aspects of Business Continuity Management
- Compliance

Information Security (Cybersecurity) Policies

- Cybersecurity policies define the framework for all other cybersecurity actions
 - Used to establish governance
 - Governance can be used to establish budgets and resource assignments
- Policies should be written at a high level describing overarching goals
 - For example, "Protect synchrophasor data from unauthorized modification or disclosure"
- Policies need to be approved by management, reviewed periodically, and updated when necessary
- Policies should be developed for all objectives and address all controls at a high level

Information Security (Cybersecurity) Policies

- Individual procedures and practices based on the cybersecurity policy need to be developed:
 - All practices and procedures should trace back to a policy statement if they don't, either a policy is missing, or the practice is unnecessary
 - Each policy statement may have multiple practices; each practice may have multiple procedures
 - Practices should implement the policies through individual procedures
 - ✓ May need different practices for different environments (i.e., securing PMUs in the field may be different than securing Phasor Data Concentrators (PDC) in the control center)
 - ✓ Will need different procedures for different hardware or environments (i.e., the procedure for securing a Vendor X PMU may be different than securing a Vendor Y PMU)
 - For example:
 - ✓ <u>Practices</u> for controlling access to PMUs and their configuration, and for protecting synchrophasor data from modification or disclosure in transit
 - ✓ <u>Procedures</u> for password construction and group/role accesses, and for configuring levels of digital hashes or encryption for communications

Organization of Information Security (Cybersecurity)

- + Responsibility for cybersecurity functions should be defined and resources allocated
- Responsibilities should be segregated to minimize unauthorized misuse
- + Contacts should be established and maintained with professional organizations and groups, and with government or law enforcement organizations
- Cybersecurity should be included in all project planning activities
- * Risks from third parties should be identified and mitigated
- * Identified security requirements should be addressed prior to use in operational environments
- + Mobile device and teleworking policies and procedures should be created and enforced

ISO 27001 A.6; *ISO 27019 6, +ISO 27019 6; NERC CIP-003, CIP-013, EOP-004

Organization of Information Security (Cybersecurity)

- OT knowledgeable staff should be included in the cybersecurity organization
 - OT may have its own cybersecurity organization that focuses only on OT concepts and practices
- Information sharing should be part of the risk assessment process
 - Some information sharing may be mandated by policy or regulation
 - Some information sharing may be voluntary
- Incident response procedures should consider the operational environment and equipment when establishing contacts
- The E-ISAC (Electricity Information Sharing and Analysis Center) should be a prime resource for sharing OT cybersecurity information

Human Resource Security

- + Human resources security includes pre-employment checking and ongoing verification
 - Staff with access to critical functions may need more scrutiny
 - + Contracted staff should indicate responsibilities in their contracts
- Procedures for re-verification on job transfer and promotions
- Procedures for removal of access when no longer needed (termination or transfer)
- + Cybersecurity awareness and training should be provided to all staff and contractors
- Formal disciplinary actions for failure to follow cybersecurity policies
- Post-employment obligations should be defined and enforced in contracts and termination agreements

Human Resource Security

- Cybersecurity awareness and training specific to field locations and substation equipment
 - Updated when equipment or environments change
 - Annual refresher
 - Include in tailgates (similar to "safety minutes")
 - Include for contractors and vendors, as well as staff
- Background checks initial and on-going
 - Formal review every 5-10 years
 - On-going supervisor observation and oversight
 - Consider different levels of checks for different job classes
 - Verification / audit process for contractors

Asset Management

- + Tracking of equipment Asset inventory
 - Includes software/firmware management
 - May also include software and data/information as an asset for example, application programs, network models
 - + Ownership tracking for all assets in inventory
 - Return of personally-assigned assets (such as laptops and access credentials) upon termination or transfer
- + Information classification
 - Labeling
 - Information handling
- Media handling
 - Management of removeable media
 - Disposal of media
 - Physical transfer of media

ISO 27001 A.8; +ISO 27019 8; NERC CIP-002, CIP-003, CIP-004, CIP-007, CIP-010, CIP-011

Asset Management

- Generally fixed in location, function, and number for equipment
 - Make and model of hardware
 - Software/firmware versions and patch level
 - Hardware or software installed features (even if not "enabled")
 - Track laptops used for testing and maintenance
 - Track removeable media used for data, configuration, or software updates
- Understand sensitivity of data where appropriate
 - Disturbance data may be more sensitive than steady-state data

Access Control

- Network and network services access
 - + Access granted based on busines need
- User access
 - + Registration and de-registration process
 - Provisioning process
 - Restricted and controlled privileged access
 - + Controlled access to "secret authentication information" (shared passwords)
 - Access granted and controlled based on policy
 - + Access controlled by "secure log-on procedure"
 - Removal of access on termination or job change

ISO 27001 A.9; +ISO 27019 9; NERC CIP-003, CIP-004, CIP-005, CIP-006, CIP-007, CIP-011

19

Access Control

- User responsibilities
 - Especially when using shared accounts
- System and application access control
 - Access to information
 - Password Management
 - Use of privileged utility programs
 - + Access to source code

Access Control

- What staff (individually or by job function) have logical or physical access?
 - Tracking access
 - Provisioning and revocation procedures
 - Pre-requisite requirements for granting access (e.g., training)
 - Oversight and review of access
- What systems have autonomous access to other systems?
 - Tracking access
 - Provisioning and revocation procedures
 - Oversight and review of access
- Procedure in place for staff transfer
- Shared accounts
 - Credential tracking
 - Procedures for changing passwords following transfer or termination

- Key management
 - + Procedures for protecting private keys

ISO 27001 A.10; +ISO 27019 10; CIP-006

22

- Appropriate uses for cryptography
 - Ensuring Confidentiality, Integrity
- Considerations for autonomous and real-time operations
 - Selection, Location and Maintenance of Certificate Authorities (CA)
 - Handling expired keys
 - Handling revoked keys
 - Handling loss of CA access
 - IEC 62351-9 for additional suggestions especially for certificate management
 - Digital certificates can be used for Identity, which can be linked to Authorization

anagement uthorization

Physical and Environmental Security

- Secure areas
 - + Physical security perimeter
 - + Physical entry controls
 - Room and facility security
 - External and environmental threats
 - Working in secure locations
 - Delivery and loading areas
 - Securing control centers
 - Securing equipment rooms
 - * Securing peripheral sites (e.g., substations)

ISO 27001 A.11; *ISO 27019 11, +ISO 27019 11; NERC CIP-003, CIP-006, CIP-007, CIP-014

Physical and Environmental Security

- Equipment security
 - + Siting and protection
 - Support infrastructure (power, other utilities, heating, ventilation, and air conditioning) [HVAC], etc.)
 - + Cabling security
 - Equipment maintenance
 - Removal of assets
 - Security of off-premises assets
 - Secure disposal or reuse of assets
 - Unattended user equipment
 - + Clear desk and clear screen
 - Security in external party premises
 - Security for customer-sited assets
 - Interconnected control and communication systems

ISO 27001 A.11; *ISO 27019 11, +ISO 27019 11; NERC CIP-003, CIP-006, CIP-007, CIP-014

Physical and Environmental Security

- Secure equipment against tampering
- Protect local (intra-substation) communications (physically and logically)
- Work orders for maintenance activities
- Track physical access to unstaffed locations
 - Track physical access against work orders

Operations Security

- + Documented operating procedures
- + Controlled changes to management procedures
- Capacity management
- + Separation of development, testing, and operational environments
- + Malware protection
- Information backup
- + Event logging
 - Protection of logged information
 - Administrator and operator logs

ISO 27001 A.12; +ISO 27019 12; NERC CIP-003, CIP-006, CIP-007, CIP-009, CIP-010

Operations Security

- + Clock synchronization
- + Software installation procedures
- + Vulnerability Management
- Restrictions on software installation
- Audit control
- * Legacy systems
- * Safety systems

ISO 27001 A.12; *ISO 27019 12, +ISO 27019 12; NERC CIP-003, CIP-006, CIP-007, CIP-009, CIP-010

Operations Security

- Establish a testing lab
 - Validate testing and installation procedures
 - Verify new equipment (especially new models or suppliers)
 - Verify software updates
 - Calibration
- Establish backup and recovery procedures
 - Maintain the ability to re-create environments (backups or equivalent)
 - Procedures / Instructions for recovery
- Secure time sources and time distribution
 - Coordinated Universal Time (UTC) vs International Atomic Time (TAI) vs local time ✓ Daylight savings time
 - ✓ Leap Seconds
 - Consistent time source for operational and non-operational (e.g., logging) functions

Communications Security

- + Network controls
- Security of network services
- * Segregation of networks
- * Security of process control data communications
- * Logical connection of external process control systems
- Information transfer
 - Agreements for information transfer
 - Electronic messaging
 - Confidentiality and non-disclosure agreements

ISO 27001 A.13; *ISO 27019 13 +ISO 27019 13; NERC CIP-005, CIP-012

30

Communications Security

- Segregate operational networks from non-operational networks
- Protect wide-area networks from compromise (confidentiality, integrity, and availability)
 - Data may be operationally sensitive or may be market sensitive
- Consider redundant communications paths
- Establish information sharing agreements with third parties to include nondisclosure
 - Reliability Coordinators, Independent System Operators (ISO), Regional transmission **Organizations (RTO)**
 - Academic and research organizations

System Acquisitions, Development, and **Maintenance**

- + Cybersecurity requirements in specifications for new systems
- Securing applications on public networks
- Protecting application services transactions
- Secure development
- System change control
- Technical review of applications after operating platform changes
- Restrictions on software changes
- Secure system engineering principles
- Secure development environment

System Acquisitions, Development, and **Maintenance**

- Outsourced development
- System security testing
- System acceptance testing
- * Principle of least functionality
- Test data

ISO 27001 A.14; *ISO 27019 14; NERC CIP-007, CIP-010, CIP-013

System Acquisitions, Development, and **Maintenance**

- Agreements with third party designers, integrators, suppliers, and construction
- Factory and site acceptance tests
 - Test data (sources) used, especially in factory tests
 - Include functionality and security tests
- Third party maintenance agreements
 - Full service
 - Advisory (e.g., update notification services)

Supplier Relationship

- Supplier access risk mitigation in agreements
- + Addressing security within supplier agreements
- Technology supply chain
- Review and audit of supplier services
- Managing changes to supplier services

35

Supplier Relationship

- Establish working relationships with suppliers
 - Contracts
 - User groups
- Return-to-factory service
 - Procedures to protect embedded data
- Considerations on how to switch suppliers
 - Failure to perform
 - Supplier stops supporting product
 - Supplier goes out of business

36

Information Security (Cybersecurity) Incident Management

- Responsibilities of staff
- Reporting cybersecurity events
- Reporting cybersecurity weaknesses
- Assessment of cybersecurity events
- + Response to cybersecurity incidents
- Learning from cybersecurity incidents
- Collection of evidence

ISO 27001 A.16; +ISO 27019 16; NERC CIP-003, CIP-008, EOP-004

Information Security (Cybersecurity) Incident Management

- Plan for continued operation during incident
- Post-event analysis
 - Document lessons learned
- Test and exercise incident response plans
 - Use laboratory environment if available
- Incident may trigger recovery plans even if no damage
 - For example, outdated software containing vulnerability should be replaced on other installations

Information Security (Cybersecurity) Aspects of **Business Continuity Management**

- Planning cybersecurity continuity
- Implementing cybersecurity continuity
- Verify, review, evaluate cybersecurity continuity
- + Redundancies
- * Emergency communication

Information Security (Cybersecurity) Aspects of **Business Continuity Management**

- Plan for continued operation during incident
- Recovery procedures
 - Focus on restoration
 - May also be used to update systems to latest tested versions
- Post-event analysis
 - Document lessons learned
- Test and exercise recovery plans
 - Use laboratory environment if available

- + Identify applicable legislation and contractual requirements
- Intellectual property rights
- Protection of records
- Privacy and protection of Personally identifiable information (PII)
- Regulations concerning cryptographic controls
- Independent review of cybersecurity
- Compliance with policies and procedures
- + Technical compliance review

ISO 27001 A.18; +ISO27019 18; NERC CMEP

- Compliance
- Determines whether the cybersecurity policies and procedures have been followed
 - For NERC CIP, this may be an actual or mock audit
 - For other standards or practices (including internally developed and enforced practices), could be self-assessments or assessments from independent third parties

- Compliance activities can include internal assessments, checklists completed during maintenance activities, third party assessments, etc.
 - Compliance is not necessarily a formal audit
- Cybersecurity reviews or informal audits may also be conducted and engagements with external assessors and auditors may be performed
 - Formal internal audits should be conducted by an independent department
 - \checkmark "Independent" of the organization that manages development of the policy, practice, and procedure documents
 - \checkmark Often performed by the independent "Internal Audit" function of an organization
 - May include a review of cybersecurity policies and procedures for completeness and effectiveness
 - ✓ Sharing of best practices (e.g., through the North American Transmission Forum [NATF]) can also be used to verify completeness of policies and procedures

Compliance

- Periodic review of applicable regulations
 - New technical requirements
 - Record keeping requirements
 - ✓ Contents
 - ✓ Retention limits
 - New administrative requirements
 - ✓ PII requirements
 - ✓ General Data Protection Regulation (GDRP) requirements (for international organizations)

Compliance

- Office checklists:
 - Account authorization and verification (stale accounts, transfers, etc.)
 - Training records
 - Physical security authorizations
 - Known vulnerabilities
 - Logging and response procedures
 - Backup and recovery procedures
 - Development and deployment procedures (including redundancy and resilience)
 - Supplier relationships and contracts

Compliance

- Field checklists:
 - Physical inspection
 - Physical security testing
 - Alarm testing
 - Network configuration and filtering verification (isolation, access restrictions, etc.)
 - Asset verification
 - Asset/media labeling
 - Configuration parameters
 - Installed software versions

Thank you

Scott R. Mix, CISSP scott.mix@pnnl.gov

