
Dominion Energy®

Chen Wang, Kevin D. Jones, Chetan Mishra (Dominion Energy)
Luigi Vanfretti, Giuseppe Laera, Marcelo de Castro (RPI)

1

Automated Generator Model
Calibration with PredictiveGrid

2

Project Overview

• Joint effort of Dominion Energy Electric
Transmission with Rensselaer Polytechnic Institute
(RPI).

• Project aims at using streaming synchrophasor data on
PredictiveGrid platform to automatically calibrate
modularized generator models including controllers.

• Generator models are built using Modelica and
exported using the FMI standard.

• Python and Jupyter Notebook to combine the data
query and the optimized model parameters calibration
process.

3

Dominion’s Needs for Model Calibration

Voltage Magnitude Spectrogram at
Unmodeled Generating Unit

● Dominion uses the same models used for planning
and control design

● Modeling challenges
○ Conventional model validation require events happening but

system mostly in ambient conditions.
○ Operation conditions change throughout the day due to changing

nature of load, line switching, V setpoint change, etc.
○ Existing model needs to be updated due to unmodeled dynamics.
○ Difficult to do when models and data are segregated.

● Vision: Data-driven modeling with PredictiveGrid and
Modelica

○ Quickly accessible synchrophasor data.
○ Portable model modules for various generator stations with

enhanced functionalities to match to data (linearization).
○ Quickly do model validation and calibration “on-demand” to

support planning and operation tasks.

PredictiveGrid

4

Envisioned Toolchain (Design)

5

● Non-proprietary, object-oriented,
equation-based
modeling language
for cyber physical systems .

● Open access (no paywall) & standardized
language specification (link), maintained by the
Modelica Association

● Open source Modelica Standard Library with
more than 1,600 components models.

● Supported by 9 tools natively, both proprietary
(Dymola, Modelon Impact, etc.) and Open
Source (OpenModelica)

● A vast number of proprietary and open-source
Modelica Libraries

The Modelica Language and the OpenIPSL Library
for Power System Modeling and Simulation

6

● OpenIPSL is an open-source Modelica library for
power systems that:

○ Contains a vast number of power system
components for phasor time domain modeling
and simulation of power systems (transmission
and distribution)

○ Several models have been verified against a
number of reference tools (PSS/E, PSAT).

● OpenIPSL enables:
○ Unambiguous model exchange, use of model in

Modelica-compliant tools.
○ Formal mathematical description, no

discretization w.r.t. specific integration method.
○ Separation of models from tools and solvers.
○ Using Dymola, as fast* as PSS/E (link).

https://github.com/modelica/ModelicaSpecification
https://www.modelica.org/association
https://mbe.modelica.university/components/packages/msl/
http://dymola.com
https://www.modelon.com/modelon-impact/
https://www.openmodelica.org/
https://modelica.org/libraries
https://github.com/openipsl
https://ep.liu.se/ecp/article.asp?issue=157&article=050&volume=

OpenIPSL Library and Example

7

The Functional Mockup Interface Standard

8

● FMI is an open access standard, also from the Modelica
Association.

● It defines a container and an interface to exchange dynamic
models using a combination of XML files, binaries and C
code zipped into a single file, called a Functional Mock-up
Unit (FMU) or .fmu.

● Supported by simulation 100+ tools!

● FMI supports model export in two modes Co-Simulation (CS)
and Model Exchange (ME)

● With a Model Exchange FMU, the numerical solver is
supplied by the importing tool. The solver in the importing
tool will determine what time steps to use, and how to
compute the states at the next time step.

● With a Co-Simulation FMU, the numerical solver is
embedded and supplied by the exporting tool. The
importing tool sets the inputs, tells the FMU to step
forward a given time, and then reads the outputs

Master Tool Slave FMUs

CS

ME

https://fmi-standard.org/downloads/
https://fmi-standard.org/tools/

Integrating Models in
PredictiveGrid

9

SW-to-SW verification of the plant model
(PSS@E vs. Modelica)

Export Modelica model as FMU with source
code

Predictive Grid Integration:
● Import measurements data
● Implement signal processing of PMU data
● Integrate the FMU by coupling model I/O

data
● Integrate tools for model calibration, i.e.

optimization-based parameter estimation.

● Challenge: Typical generator plant models are isolated in
simulation tool (PSS/E):

○ Limited to in-built
capabilities of the tool

○ Not possible to deploy
existing PSS/E model in PredictiveGrid platform.

● Solution: use Modelica and FMI to create a portable
model! However, the models needed were not available
in OpenIPSL.

● Approach:
○ Implement the model in Modelica and verify against PSS/E.
○ If results are the same, export Modelica model as an FMU
○ Deploy model in platform and build toolchain for model

calibration:
● Use Python functionalities to integrate the model.
● Use Python and Jupyter notebooks to build calibration

“notebook”

Manually Update PSS/E Model Data
(Could also be automated)

Models for Software-to-Software Verification

10

SMIB test system diagram in PSS@E
(GEN01 = WC ST01)

Plant configuration of the reference PSS@E model

Plant Name Generator AVR PSS Turbine
Governor

WC ST01 GENROE ESST1A PSS2A IEEEG1

Turbine
governor
(IEEEG1)

Generator
(GENROE)

Power System
Stabilizer
(PSS2A)

Excitation system
(ESST1A)WC ST01

Modelica Implementation using the OpenIPSL Library

Verification: Modelica (Dymola SW) vs PSS/E

11

Test: 3-phase fault to ground applied to bus FAULT of the test system at t=2sec for 0.15sec

Modelica Model for PMU-data Replay and FMI Export

12

● Model configuration of WC ST01 for FMU export:

Legend

1. Record with system data
2. Blocks with power flow data as a

parameter.
3. Controlled voltage source
4. Generator model (GENROE)
5. Turbine Governor model (IEEEG1)
6. Power System Stabilizer model

(PSS2A)
7. Automatic Voltage Regulator model

(ESST1A)
8. Model interfaces giving the output

active and reactive power of the
generator (4)

9. Inputs for measurements

2

1

3
4

5

6

7 8

9

Modelica/FMI Model Calibration:

13

● ModestPy is an Open Source Python tool for parameter estimation.

● Developed by the University of Southern Denmark, compatible with Python 3 and possible to use in
Linux (platform requirement).

● It facilitates parameter estimation in models compliant with Functional Mock-up Interface (FMI)
standard. That means it works with both CS and ME FMUs!

● It uses a combination of global and local search methods (genetic algorithm, pattern search, truncated
Newton method, L-BFGS-B, sequential least squares) that can be applied in a sequentially.

● For our proof-of-concept we have used a Co-Simulation FMU of the plant exported with source code to
allow for its use on the platform.

○ The CS FMU showed a more stable behavior on the PingThings platform

https://github.com/sdu-cfei/modest-py
https://fmi-standard.org/

Signal Processing

14

Data is retrieved
● PMU stream is selected
● Time window is selected
● Sampling frequency is determined

Data is prepared
● Data passes a high pass filter (very low

frequencies removed)
● Data passess a low pass filter (noise)
● Data is resampled (match time step of solver)

Final Signals for Model Coupling
● Current and voltage magnitudes and angles

become phasors in per unit
● Calculated, positive sequence V, I, P and Q.
● Real and imag. parts of voltage are extracted

Sub-station
Name and

Voltage
Level

Model and Toolchain Integration

15

Import a specific user defined library for connection to the
platform and retrieve data

Import standard Python modules for mathematical calculations, data
processing and ModestPy tool after its installation

Instantiation of the FMU

Defining inputs/outputs after signal processing

Defining parameters to be estimated

Defining estimation
algorithms and settings

Testing: Parameter Estimation Under Ambient Conditions

16

● After a linear analysis of the plant, it has been noticed that the exciter could contribute to the
anomalous behavior.

● Therefore, an estimation of the voltage regulator gain Ka and time constant Ta and the steady state
active (P0) and reactive power (Q0), has been performed for ambient conditions.

GA Nelder-Mead

Nelder-Mead Error

Sequence of algorithms used for the estimation

GA Algorithm

estimation elapsed time ≈ 1431s

Testing: Parameter Estimation Under a Transient

17

● The estimation of the voltage regulator gain Ka and time constant Ta, active (P0) and reactive
power (Q0), has been performed for transient conditions..

GA Nelder-Mead

Error

Sequence of algorithms used for the estimation

GA algorithm Nelder-Mead

estimation elapsed time ≈ 447s

Proof-of-Concept: Parameter Estimation Results for 4 parameters

18

● From the results, the exciter gain Ka (uncalibrated value 160) keeps a value of the same order of magnitude in
both scenarios whereas the time constant Ta (uncalibrated value 0.029s) has a difference of several orders of
magnitude.

● More parameters for different parts of the model need to be included (e.g. turbine, PSS, etc).
● More scenarios and different combinations of parameters will be tested since the preliminary results could also be

affected by correlation between parameters.
Calibration for Transient EventCalibration for Ambient

Conclusions and Future Work

19

● Open access, standards-based, portable and reusable modeling using Modelica and FMI:
○ Open access, interoperable standards for modeling exchange provide model portability → new implemented models

in OpenIPSL can now be used by Dominion (and others!) for multiple tasks.
○ Modelica and FMI standards provide great benefits for integration with modern platforms (e.g. cloud).
○ Model portability provides the flexibility to perform any type of simulation analysis without a specific tool dependency.

● PredictiveGrid Platform:
○ Availability of Python tools (i.e. ModestPy), allowed for quickly prototyping a new solution.
○ Custom Python routines for signal processing to couple models with data were also implemented.
○ This new prototype has helped identify feature enhancements and new functionalities needed in the platform to

facilitate quicker development of new applications (e.g. AWS instance resources for optimization).

● Proof of concept successfully implemented:
○ Results show great promise for automation for model calibration within a synchrophasor utility platform.
○ Provides a framework that can be generalized for any other generator stations, FACTS devices, etc.
○ Open source tools (i.e. ModestPy) minimized development effort (no need to reinvent the wheel!)
○ Need to develop methods and tools for parameter selection and correlation analysis.

● Future work: enhance prototype and expand coverage for other stations in Dominion’s grid; implement
new applications based on the developed models.

Thank you!

20

	Dominion Energy®�����
���Chen Wang, Kevin D. Jones, Chetan Mishra (Dominion Energy)
Luigi Vanfretti, Giuseppe Laera, Marcelo de Castro (RPI)�
	Project Overview
	Dominion’s Needs for Model Calibration
	PredictiveGrid
	Envisioned Toolchain (Design)
	The Modelica Language and the OpenIPSL Library �for Power System Modeling and Simulation
	OpenIPSL Library and Example
	The Functional Mockup Interface Standard
	Integrating Models in
PredictiveGrid
	Models for Software-to-Software Verification
	Verification: Modelica (Dymola SW) vs PSS/E
	Modelica Model for PMU-data Replay and FMI Export
	Modelica/FMI Model Calibration:
	Signal Processing
	Model and Toolchain Integration
	Testing: Parameter Estimation Under Ambient Conditions
	Testing: Parameter Estimation Under a Transient
	Proof-of-Concept: Parameter Estimation Results for 4 parameters
	Conclusions and Future Work
	����Thank you!

