
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Data Analytics in Power Grids: 
Tractable Algorithms & Path Forward

Deep Deka 
Theory Division

deepjyoti@lanl.gov

NASPI 2019



In
te

rp
re

ta
bi

lit
y

Speed

Physics 
(Power-Systems) 
Informed Tuning 

(Power System interpretable 
but repetitive & off-line, 

hand-controlled)

Physics-Free
Machine Learning

(automatic, training & execution efficient,
but lacking Power System interpretability)

Physics Informed
Machine Learning

PMU data-to-
predictions
approaches

 Advantage:  Provable results, Missing data extensions



Transmission and Distribution Grid

• Voltage: High Medium                          Low



Substation

Load Nodes

• Structure Learning
• Learning Line Impedances 
• Incomplete observations

Missing Node

Distribution Grid Learning Problems:

with theoretical 
guarantees



Applications of PMUs

• Structure:
• Failure/Fault Identification
• Connection/phase verification

• Impedance Estimation:
• Non-intrusive control 
• Use in DSO optimization

• Learning with Missing Data:
• Privacy quantification
• Meter Location Selection



• Data: Time-series Nodal voltages at all nodes

• Unobserved: all lines
• Estimate: Operational Topology

• IEEE Trans. Control of Networks 2017

Learning with nodal voltages



Topology Reconstruction

Greedy Topology Learning:
• Spanning Tree with  edge weights given by  

𝑐𝑐

𝑏𝑏

a

• NO additional information needed 
• Works for monotonic flows (gas,water, heating)

Sample Complexity :
For a grid with constant depth 
and sub-Gaussian complex power 
injections,  𝑂𝑂( 𝑉𝑉 2 log 𝑉𝑉 /𝜂𝜂 )
samples recovers the true 
topology with probability 1 − 𝜂𝜂.



Topology Learning (No missing nodes)

33-bus test system, Matpower
Reference: 12 KV substation voltage

Effect of Noise

Extension: 
a.  Missing nodal voltages 

(under review, TCNS)
b. Three phase systems 

(Trans. Power Systems, 2019.)



• Data: Nodal voltages and injection samples at leaves
• Estimate: Operational Topology + Line Impedance 

• PSCC 2018,
• IEEE TCNS (under review)

Learning with end-users



Learning with end-users

• Data: Time-series Nodal voltages and injection samples at leaves
• Algorithm:
 Find effective impedances between leaves (using voltage, injections) 

 Key: Effective resistances are additive on trees  

a

b



Learning with end-users

• Data: Time-series Nodal voltages and injection samples at leaves
• Algorithm:
 Find effective impedances between leaves
 Recursive Grouping Algo to learn topology & distances from known 

effective impedances

a

b



Recursive Grouping Algo

1. Learn siblings

1. 𝑎𝑎, 𝑏𝑏 are leaf nodes with common parent iff
𝑑𝑑 𝑎𝑎, 𝑐𝑐 − 𝑑𝑑 𝑏𝑏, 𝑐𝑐 = 𝑑𝑑 𝑎𝑎, 𝑐𝑐′ − 𝑑𝑑(𝑏𝑏, 𝑐𝑐′) for all 𝑐𝑐, 𝑐𝑐′ ≠ 𝑎𝑎, 𝑏𝑏

2. 𝑎𝑎 is a leaf node and 𝑏𝑏 is its parent iff

𝑑𝑑 𝑎𝑎, 𝑐𝑐 − 𝑑𝑑(𝑏𝑏, 𝑐𝑐) = 𝑑𝑑 𝑎𝑎, 𝑏𝑏 for all 𝑐𝑐 ≠ 𝑎𝑎, 𝑏𝑏



Recursive Grouping Algo

2. Introduce parents 

3. Update  distance   

1. 𝑎𝑎, 𝑏𝑏 are leaf nodes with common parent iff
𝑑𝑑 𝑎𝑎, 𝑐𝑐 − 𝑑𝑑 𝑏𝑏, 𝑐𝑐 = 𝑑𝑑 𝑎𝑎, 𝑐𝑐′ − 𝑑𝑑(𝑏𝑏, 𝑐𝑐′) for all 𝑐𝑐, 𝑐𝑐′ ≠ 𝑎𝑎, 𝑏𝑏

2. 𝑎𝑎 is a leaf node and 𝑏𝑏 is its parent iff

𝑑𝑑 𝑎𝑎, 𝑐𝑐 − 𝑑𝑑(𝑏𝑏, 𝑐𝑐) = 𝑑𝑑 𝑎𝑎, 𝑏𝑏 for all 𝑐𝑐 ≠ 𝑎𝑎, 𝑏𝑏



Recursive Grouping Algo

1. Learn siblings



Recursive Grouping Algo

2. Introduce parents 

3. Update  distance   



Recursive Grouping Algo

After Iterations



Learning with end-users

• Algorithm:
 Compute effective impedances between leaves
 Learn topology & distances iteratively
 Threshold for finite samples effects: dynamically selected

Sample Complexity :
For a grid with constant depth 
and sub-Gaussian complex power 
injections,  𝑂𝑂( 𝑉𝑉 log 𝑉𝑉 /𝜂𝜂 )
samples recovers the true 
topology with probability 1 − 𝜂𝜂.



Simulations: IEEE 33 bus graphs (Matpower samples)

500      600       700       800     900     1000



Machine Learning in Transmission Grid

• Voltage: High Medium                          Low



Outage Localization in Transmission Grid

• Data: Nodal voltages from few buses
• Goal: Learn locations from historical data
• IEEE Trans. Power System (under review)



Outage Localization in Transmission Grid

• Data: Nodal voltages from few buses
• Goal: Learn locations from historical data
• Method: Use right features  Convolutional Neural Network (CNN)



Outage Localization in Transmission Grid

• Data: Nodal voltages from few buses
• Goal: Learn locations from historical data

• Method: Use right features  Convolutional Neural Network (CNN)



Outage Localization in Transmission Grid

• Data: Nodal voltages from few buses
• Goal: Learn locations from historical data

• Method: Use right features  Convolutional Neural Network (CNN)
•

ARC: Average Rank of Correct

Neighborhood property



Jan 7 - 11, 2019

Support from: 

Conclusion: 
Machine Learning works if system physics used correctly

Collaborators: 
LANL:        Michael Chertkov Scott Backhaus 

Students:        Sejun Park (KAIST)     Wenting Li (RPI)     



Jan 7 - 11, 2019

Plea: Please share/give real-world data

a. International ??    
b. Synthetic data grants ??   
c. Large-scale competition   ARPA –E OPF challenge??
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