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Transmission and Distribution Grid
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Distribution Grid Learning Problems:

e Structure Learning

with theoretical
guarantees

e Learning Line Impedances

e |ncomplete observations

L @ substation
\. @® Load Nodes

:.: Missing Node



Applications of PMUs

e Structure:

e Failure/Fault Identification
e Connection/phase verification

e |mpedance Estimation:
* Non-intrusive control
 Use in DSO optimization

e |Learning with Missing Data:
e Privacy quantification
e Meter Location Selection




Learning with nodal voltages

Data: Time-series Nodal voltages at all nodes
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Topology Reconstruction

Greedy Topology Learning:
e Spanning Tree with edge weights given by

bap = E[(Va — pv,,) — (Vs — py)]? |

e NO additional information needed

e Works for monotonic flows (gas,water, heating)

Sample Complexity :

For a grid with constant depth
and sub-Gaussian complex power
injections, O(|V|*log(|V|/n))
samples recovers the true
topology with probability 1 — 1.




Average number of topology errors

Topology Learning (No missing nodes)

33-bus test system, Matpower
Reference: 12 KV substation voltage

Effect of Noise
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Voltage samples at each bus of 33 bus system



Learning with end-users

 Data: Nodal voltages and injection samples at leaves
e Estimate: Operational Topology + Line Impedance

e PSCC 2018,
e |EEE TCNS (under review) ‘




Learning with end-users

e Data: Time-series Nodal voltages and injection samples at leaves
e Algorithm:
» Find effective impedances between leaves (using voltage, injections)

Repp(a,b) = ) Regge

edgec Path

s Key: Effective resistances are additive on trees




Learning with end-users

e Data: Time-series Nodal voltages and injection samples at leaves
e Algorithm:
» Find effective impedances between leaves

» Recursive Grouping Algo to learn topology & distances from known
effective impedances




Recursive Grouping Algo

4 N
1. a, b are leaf nodes with common parent iff

d(a,c) —d(b,c) =d(a,c’) —d(b,c")forallc,c’ # a,b

2. ais a leaf node and b is its parent iff

d(a,c) —d(b,c) =d(a,b) forallc # a,b
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Recursive Grouping Algo

-
1. a, b are leaf nodes with common parent iff

d(a,c) —d(b,c) =d(a,c’) —d(b,c") forallc,c’ # a,b

2. ais a leaf node and b is its parent iff

d(a,c) —d(b,c) =d(a,b) forallc # a,b
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Recursive Grouping Algo
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Recursive Grouping Algo

s After Iterations
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Learning with end-users

e Algorithm:

» Compute effective impedances between leaves

» Learn topology & distances iteratively

» Threshold for finite samples effects: dynamically selected

Sample Complexity :

For a grid with constant depth
and sub-Gaussian complex power

injections, O(|V|log(|V|/n)) O
samples recovers the true
topology with probability 1 — 7. O O O O




Simulations: IEEE 33 bus graphs (Matpower samples)
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Machine Learning in Transmission Grid
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Outage Localization in Transmission Grid

Data: Nodal voltages from few buses

Goal: Learn locations from historical data

|IEEE Trans. Power System (under review)
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Fig. 1: IEEE 68-bus system with five coherence groups [19].




Outage Localization in Transmission Grid

Data: Nodal voltages from few buses

Goal: Learn locations from historical data

e Method: Use right features - Convolutional Neural Network (CNN)
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Fig. 1: IEEE 68-bus system with five coherence groups [19].



Outage Localization in Transmission Grid

e Data: Nodal voltages from few buses
e Goal: Learn locations from historical data

e Method: Use right features - Convolutional Neural Network (CNN)
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Outage Localization in Transmission Grid

e Data: Nodal voltages from few buses

e Goal: Learn locations from historical data
e Method: Use right features - Convolutional Neural Network (CNN)

ARC: Average Rank of Correct

Neighborhood property

3

The ratio of measured buses| 7% | 10 % 15 %
Total number of buses 5- 8 10
ARC 2.3 1.8 1.5

@ Generator 1

Load
A Transformer




Conclusion:
Machine Learning works if system physics used correctly

Collaborators:
LANL: Michael Chertkov  Scott Backhaus
Students: Sejun Park (KAIST) Wenting Li (RPI)
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Plea: Please share/give real-world data

a. International ??
b. Synthetic data grants ??
c. Large-scale competition > ARPA —E OPF challenge??
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