

Techniques to Support Next-Generation of Synchrophasor Technology Applications

Anamitra Pal (<u>Anamitra.Pal@asu.edu</u>)

Assistant Professor, Arizona State University

April 16, 2019

Evolving Grid – Evolving World

Sample Net Load - March 31, 2012 MW 28,000 26,000 24,000 22,000 2012 20,000 (loutoo) 2013 (octual) 18,000 ramp need 2014 16,000 2015 2016 ~13,000 MW in three hours 14,000 2017 2018 12,000 2020 overgeneration 10,000 risk 0 12am 120 Hour

(from the California Independent System Operator)

The duck curve shows steep ramping needs and overgeneration risk

PMUs – A Window to the Future

- PMUs provide insight into what is coming¹:
 - Real-Time Capabilities
 - Situational awareness
 - Equipment problem detection
 - Study-Mode Capabilities
 - Model validation
 - Renewable resource integration

- Synchrophasor infrastructure must NOT be taken for granted:
 - Understand the information that is conveyed through the measurements
 - Perform periodic maintenance (calibration) of the associated equipment

1. U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, "Advancement of Synchrophasor Technology", Mar. 3 2016. [Online]. Available: <u>https://www.smartgrid.gov/files/20160320_Synchrophasor_Report.pdf</u>

Machine Learning – Best Bang for Your Buck

- Translate raw data into actionable information:
 - Equipment Malfunction Identification through Signature Analysis and Transfer Learning (TL)
 - Intelligent Compression Techniques for Real-time Data Sharing as well as Data Storage
 - Contingency Forecasting using Online Dictionary Learning (ODL) and Active Learning (AL)

Periodic Calibration is Necessary

- Goal: Prevent degradation of PMU output with time and in presence of realistic errors
- Typical errors found in PMU Measurements:
 - Device error
 - Instrumentation error
- Existing PMU calibration systems can successfully calibrate PMU devices
- Instrumentation error is a function of age and system loading and is an active area of research²

2. P. Chatterjee, A. Pal, J. S. Thorp, J. De La Ree, and V. A. Centeno, "Error reduction of phasor measurement unit (PMU) data considering practical constraints," *IET Gener., Transm. Distrib.*, vol. 12, no. 10, pp. 2332-2339, May 2018.

Evolution of Synchrophasor Analytics

- Transmission Related:
 - Three-phase linear state estimator (LSE) for 500kV network of Dominion Energy
 - Software developed by EPG (RTDMS, PGDA, ...)
- Computation Related:
 - Synchrophasor solutions for the full transmission system
 - The PingThings Approach (High Performance Sandbox³)
- Distribution Related:
 - Event localization
 - Anomaly detection
 - Distribution system LSE
 - Bad data detection/correction

3. K. D. Jones, and S. Murphy, "The role of a high performance sandbox in your synchrophasor analytics pipeline," NASPI, Albuquerque, NM, April 2018. URL: <u>https://www.naspi.org/sites/default/files/2018-05/02_Jones_Murphy_TheRole_20180424.pdf</u>

6

The Way Forward ...

- Synchrophasor technology is here to stay and grow ...
- There is NO "one size-fits all" solution with regards to data analytics for synchrophasor technology ...
- Continued interest and support is CRITICAL!!!

