

# advanced network science initiative (ansi)



## Statistical learning based online prediction, detection, and classification of anomalies in power grids

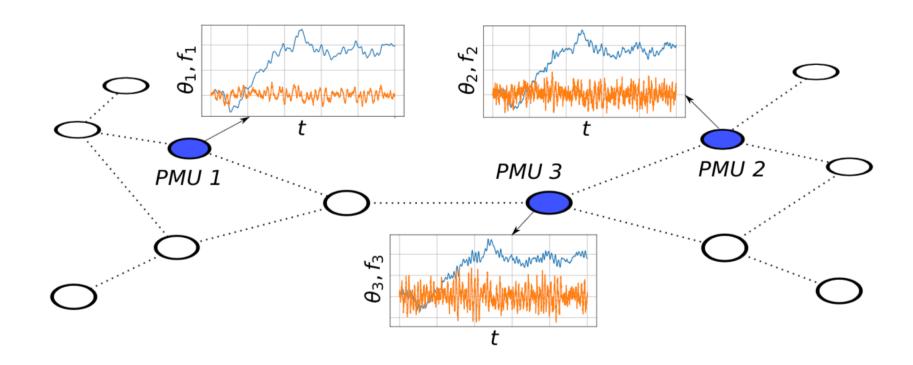
Christopher Hannon, Deepjyoti Deka, Marc Vuffray, Andrey Lokhov

Los Alamos National Laboratory Advanced Network Science Initiative

#### PMU data analytics in power grids

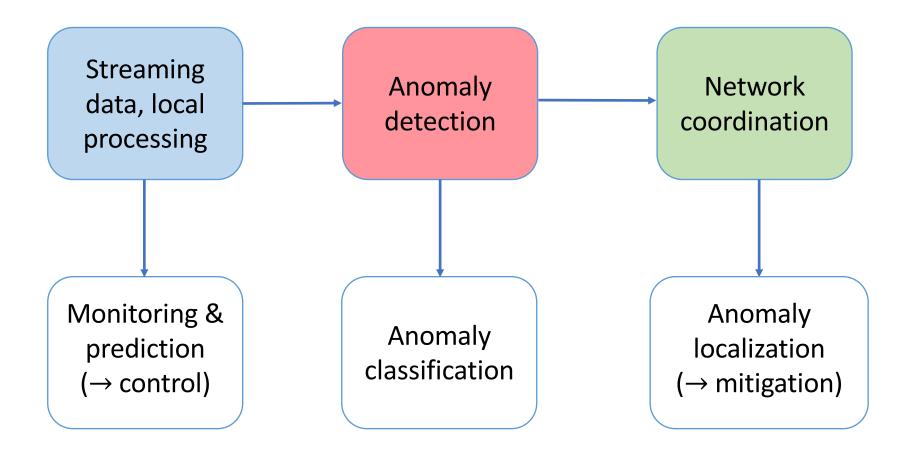
- ✓ State estimation
- ✓ Model validation
- ✓ Forced oscillations
- ✓ System stability

- ✓ Control Parameter calibration
- ✓ Generation measures
- ✓ re-dispatch
- **√** ..



This talk: dealing with anomalies (ideally, methods coordinated with other tasks above)

#### Monitoring of anomalies: tasks

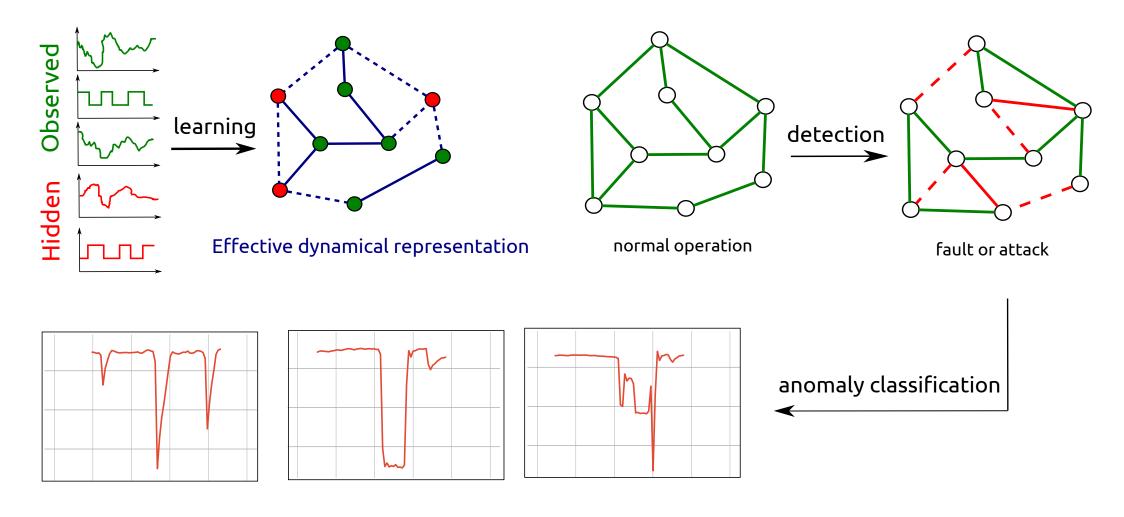


End goal: assisting operators through a software with automatic algorithmic processing

- ✓ Computational efficiency
- ✓ Rigorous guarantees

- ✓ Interpretability (explanations)
- ✓ Simplicity & vizualization

#### Statistical learning framework: unified approach with guarantees



**After local processing:** network-wide communication, anomaly localization and implementation of control measures

#### Principle challenges in anomalies for power grid

- Precise model often unknown or parameters changing in time
- > Rigorous guarantees on quality of predictions often absent
- > Identification of predefined anomaly types can be vulnerable to previously unseen anomalies
- > Existing approaches (e.g. with tunable parameters) are often not transferrable
- Logic behind decisions through some algorithms are not always readily interpretable
- > The need for algorithms to run faster than real time and make predictions

#### Solutions offered by the statistical learning framework

- Precise model often unknown or parameters changing in time Learning a stochastic model at every time point
- Rigorous guarantees on quality of predictions often absent Theoretical and empirical guarantees
- ➤ Identification of predefined anomaly types can be vulnerable to previously unseen anomalies Agnostic to predefined faults or attack vectors (CPS perspective)
- Existing approaches (e.g. with tunable parameters) are often not transferrable No tunable hyperparameters, transferability of methods
- Logic behind decisions through some algorithms are not always readily interpretable Probabilistic scoring, explanation of decisions
- > The need for algorithms to run faster than real time and make predictions Fast learning process generating predictive model

#### Diving into details: learning of an effective model

Sometimes, we have a good idea of the model form...

$$M_i \ddot{\delta}_i + D_i \dot{\delta}_i = -\sum_{(ij) \in E} \beta_{ij} (\delta_i - \delta_j) + \delta P_i$$

But often, we don't even have that!

$$X_{t+1} = F(X_t, X_{t-1}, \dots, X_{t-k}, \xi)$$



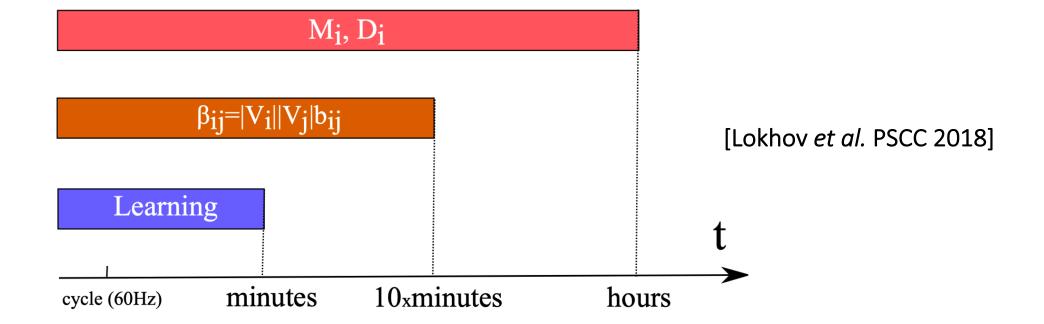
#### Diving into details: learning of an effective model

By default, the "true" model can be a very complicated non-linear object with memory:

$$X_{t+1} = F(X_t, X_{t-1}, \dots, X_{t-k}, \xi)$$

Linearization at short time scales and steady systems:

$$X_{t+1} = AX_t + BX_{t-1} + \dots + \Sigma \xi_t$$
$$X_{t+1} = AX_t + \Sigma \xi_t$$



#### Method: maximum likelihood estimator

**Proposition:** using T observations  $\{X_t\}_{t=1,...,T}$ 

$$\widehat{A} = \underset{A}{\operatorname{argmin}} \sum_{t=1}^{T-1} \|X_{t+1} - AX_t\|_2^2$$

$$\Sigma_1 = rac{1}{T-1} \sum_{t=1}^{T-1} X_{t+1} X_t^ op, \qquad \Sigma_0 = rac{1}{T-1} \sum_{t=1}^{T-1} X_t X_t^ op$$

Unconstrained Maximum Likelihood (UML) estimator:

$$\widehat{A} = \Sigma_1 \Sigma_0^{-1}$$

#### UML estimator: theoretical analysis

Theorem: bound on the expected estimation error

$$\|\widehat{A} - A\|_{\mathsf{F}} \leq \frac{\|B\|_2}{\epsilon \sqrt{T - 1}} \sqrt{\mathbb{E}\left[\mathsf{Tr}(\Sigma_0)\right] \mathbb{E}\left[\|\Sigma_0^{-1}\|_{\mathsf{F}}^2\right]}$$

**Remark:** translates into an estimate on the amount of data that guarantees reconstruction to a given accuracy

#### UML estimator: theoretical analysis

Theorem: bound on the expected estimation error

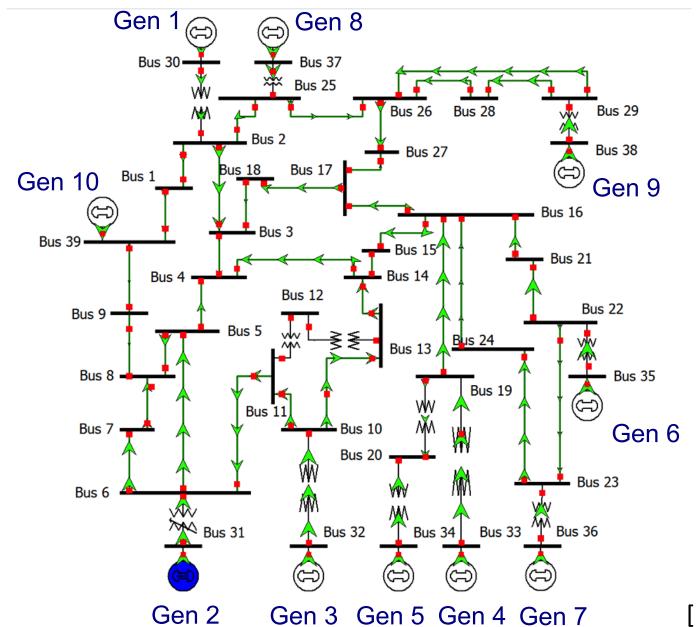
$$\widehat{A}_d = \frac{\widehat{A} - \mathbb{I}_{2N \times 2N}}{\Delta t}$$

$$\|\widehat{A}_{d} - A_{d}\|_{\mathsf{F}} \leq \epsilon^{-1} \sqrt{\frac{\sum_{i=1}^{N} M_{i}^{-2} \sigma_{P_{i}}^{2}}{\Delta t (T-1)}} \mathbb{E}\left[\mathsf{Tr}(\Sigma_{0})\right] \mathbb{E}\left[\|\Sigma_{0}^{-1}\|_{\mathsf{F}}^{2}\right]$$

**Remark:** translates into an estimate on the amount of data that guarantees reconstruction to a given accuracy Dependence only on  $t_{obs} = T\Delta t$ 

[Lokhov et al. PSCC 2018], see also [Simchowitz et al. COLT 2018]

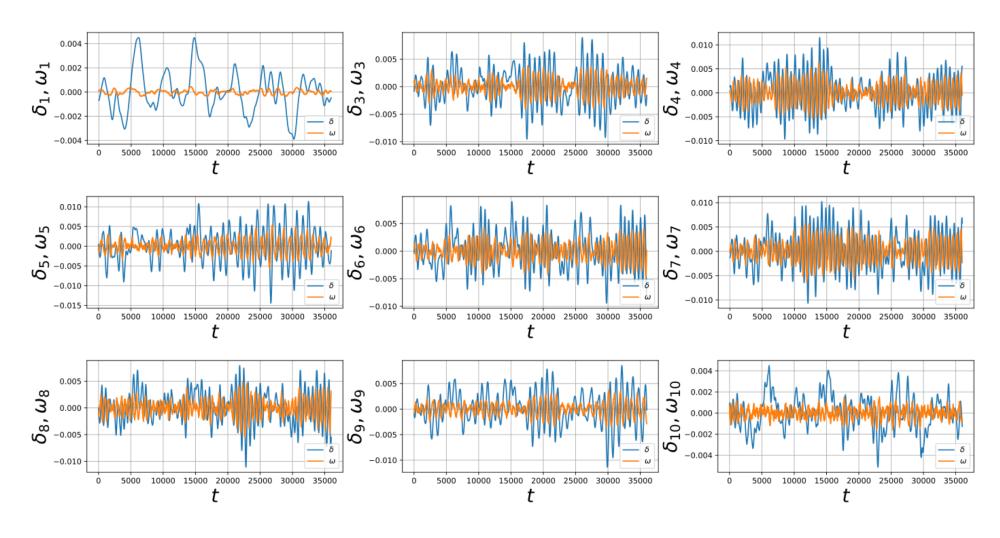
#### Numerical illustration: 39-bus system with 10 generators



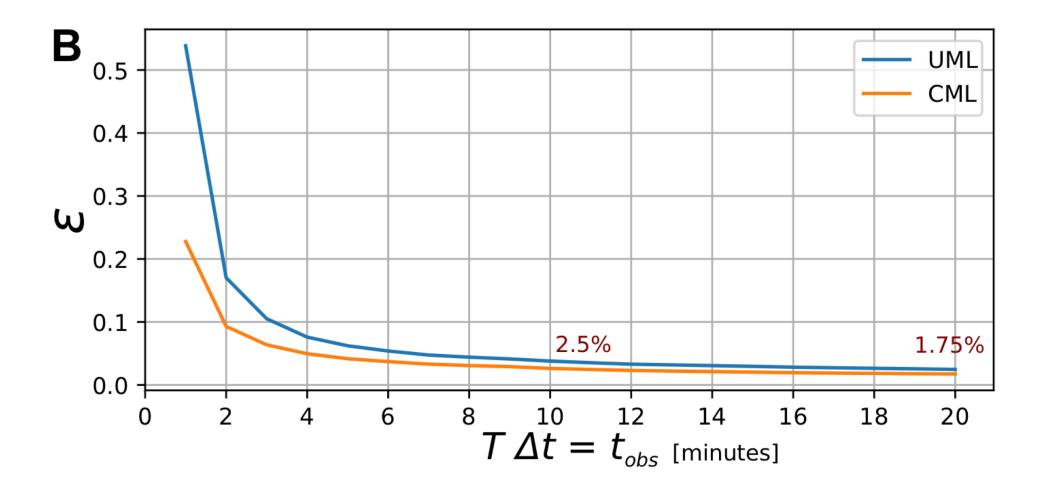
[Lokhov et al. PSCC 2018]

#### Numerical illustration: 39-bus system with 10 generators

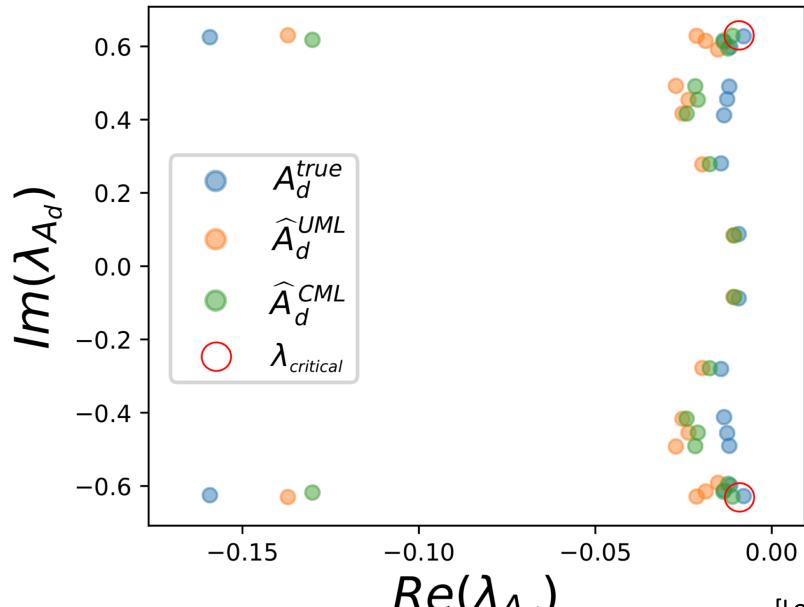
Sampled at the smallest resolution,  $\Delta t = 1/60$  sec (1 cycle),  $\sigma_{P_i} = 0.01$  p.u.



#### Dependence on total observation time $t_{\rm obs}$

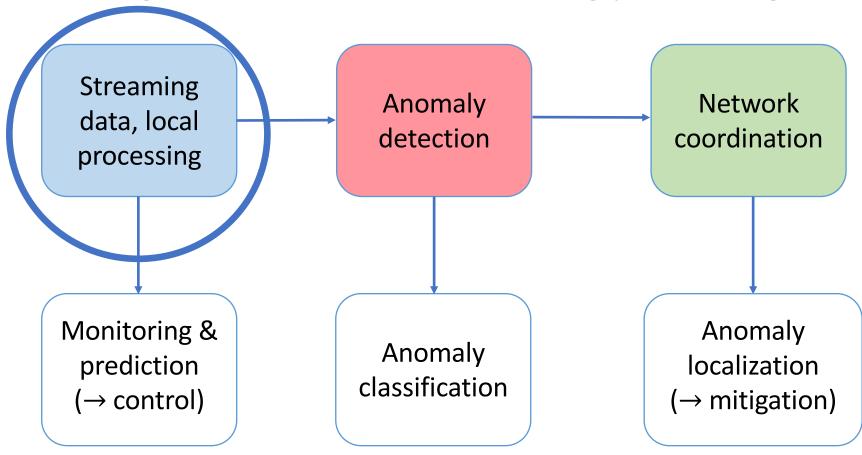


#### Prediction of critical eigenvalues

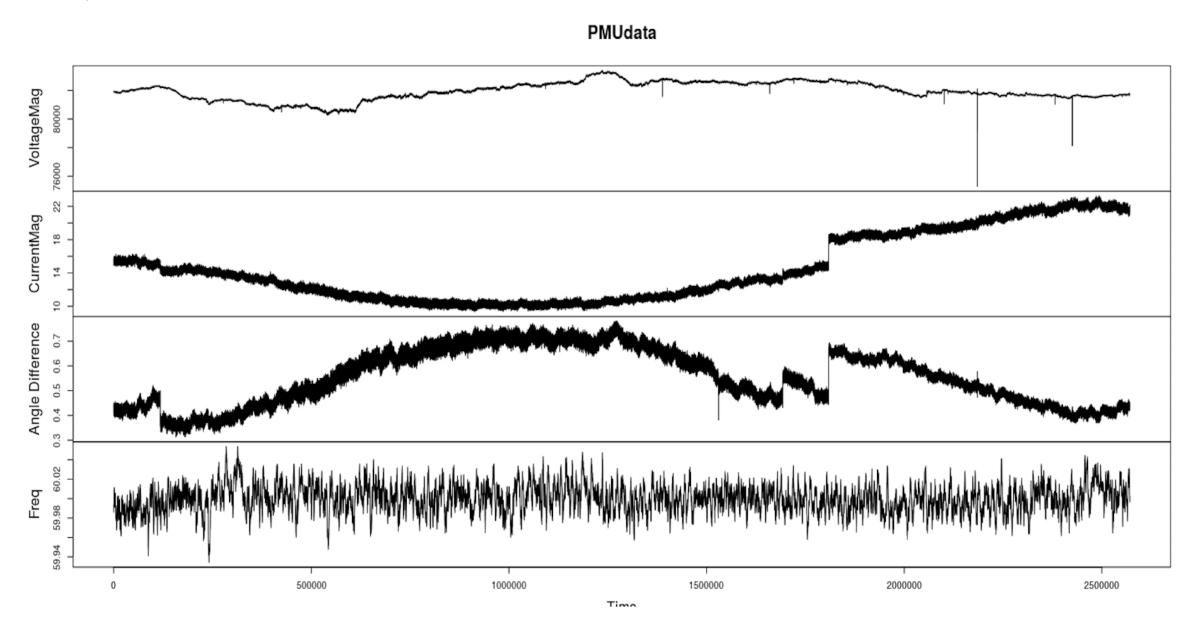


[Lokhov et al. PSCC 2018]

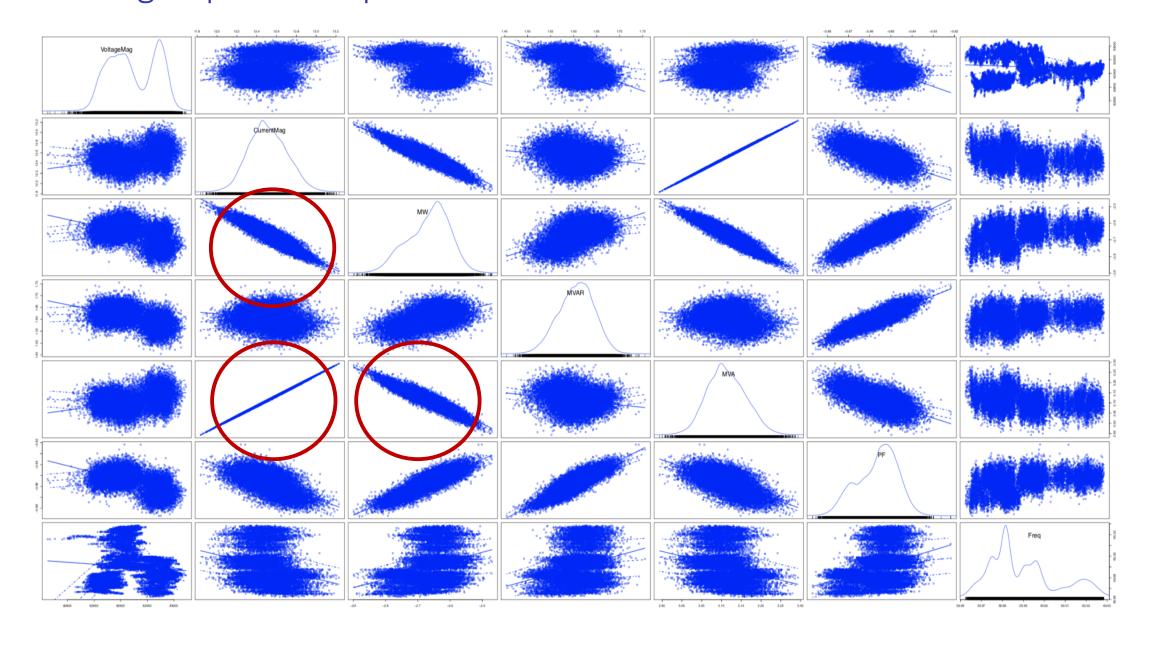
#### Statistical learning framework: local streaming processing



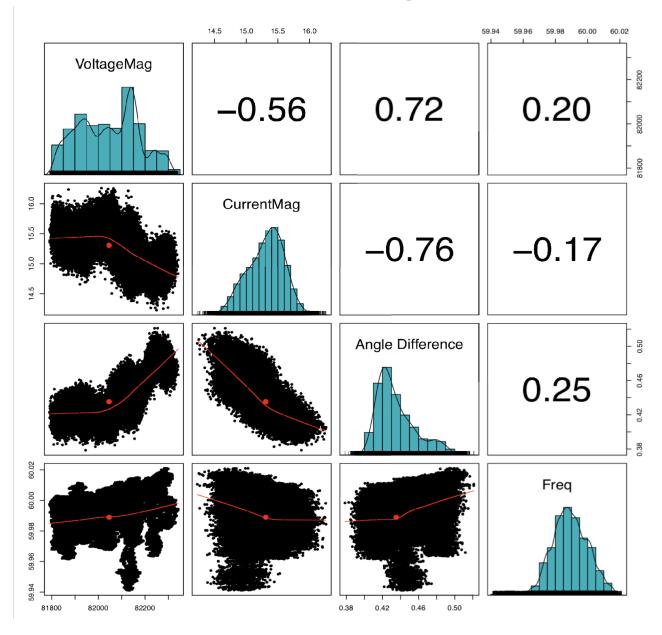
#### Example of raw PMU data



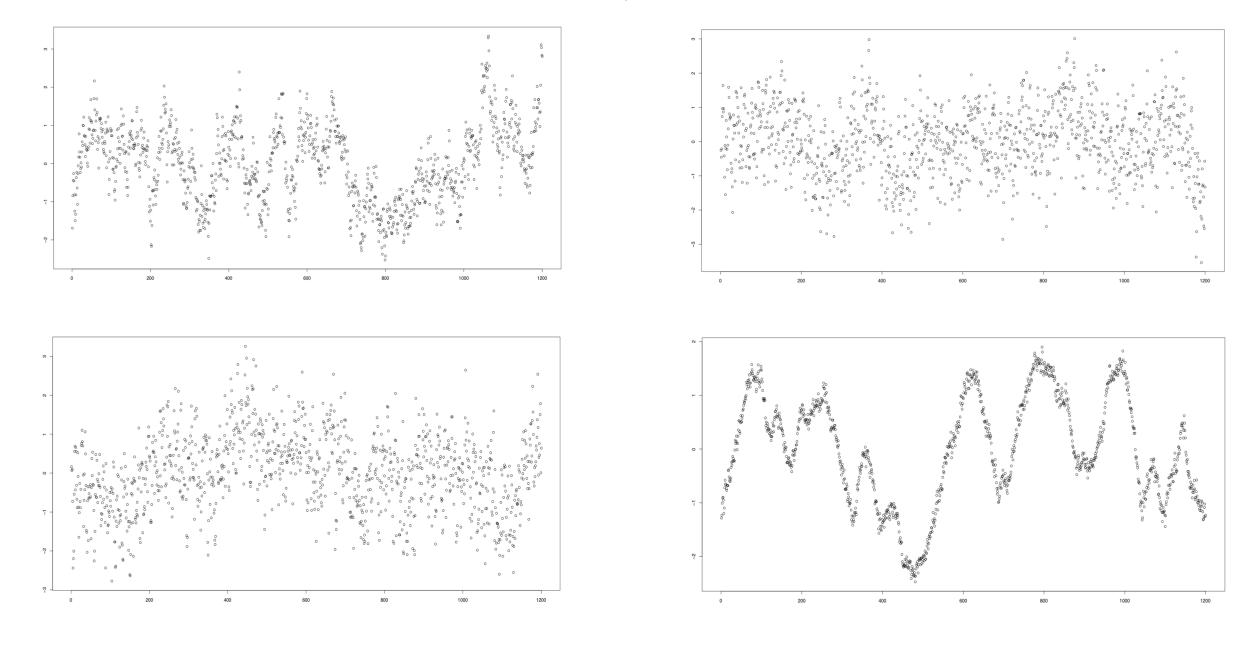
#### Eliminating dependent quantities that can be derived



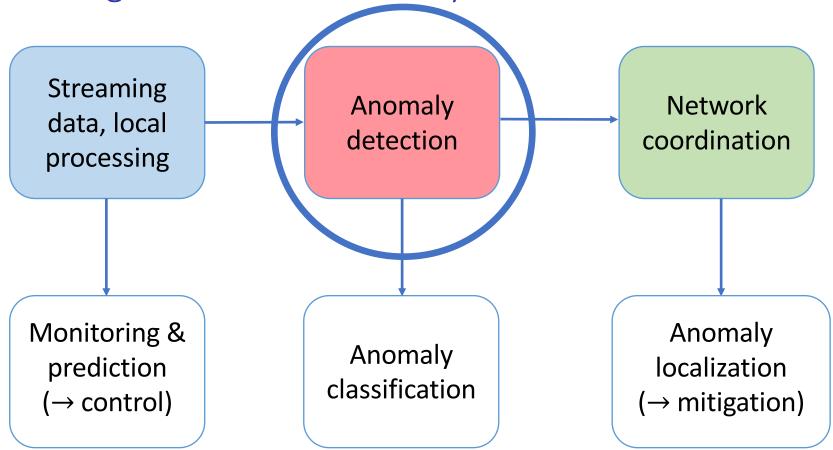
#### Data streams per PMU we will be working with



### Data standardization (trend, variance, prediction time scale)



Statistical learning framework: anomaly detection



#### Learning a linear model over 10 minutes with prediction scale 0.5 sec

$$X_{t+1} = AX_t + \Sigma \xi_t$$

Example of an outcome (learning time is faster than real time 0.5 sec):

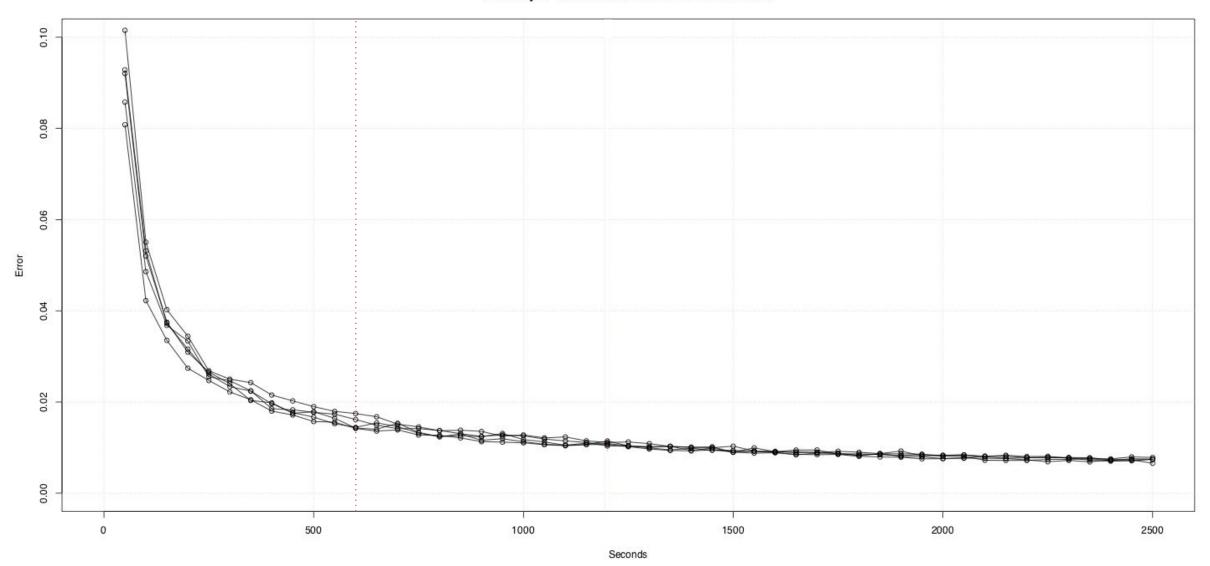
$$A = \begin{pmatrix} 0.882118137 & 0.012060263 & 0.006386051 & -0.029965801 \\ -0.014293795 & 0.478200526 & -0.192183794 & -0.017579340 \\ 0.022435590 & -0.080999570 & 0.598828527 & 0.001700428 \\ 0.002928399 & -0.002927597 & 0.001563269 & 0.996497662 \end{pmatrix}$$

Residuals well described by a multivariate Normal distribution with non-trivial covariance matrix

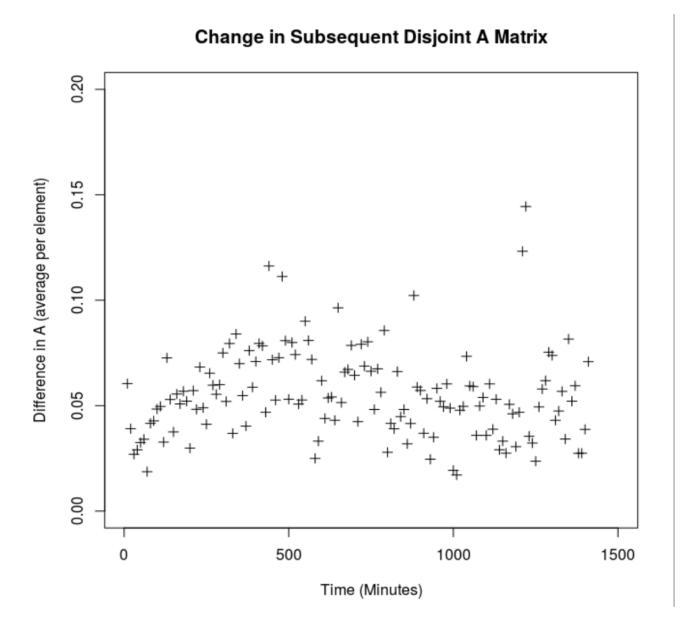
Is 10 min enough to guarantee acceptable accuracy? Is linear model adequate?

#### Empirical validation of T=10 minutes learning scale

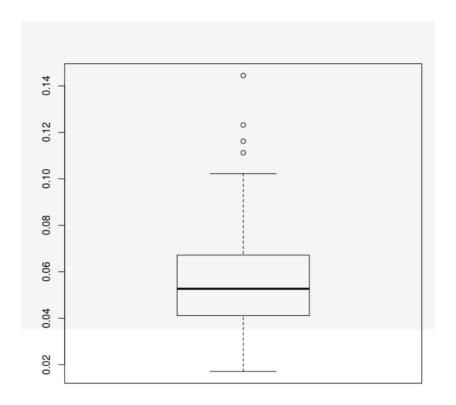
Similarity of 'A' Matrices of Real and Simulated Data



#### Why not taking larger T compared to 10 min?

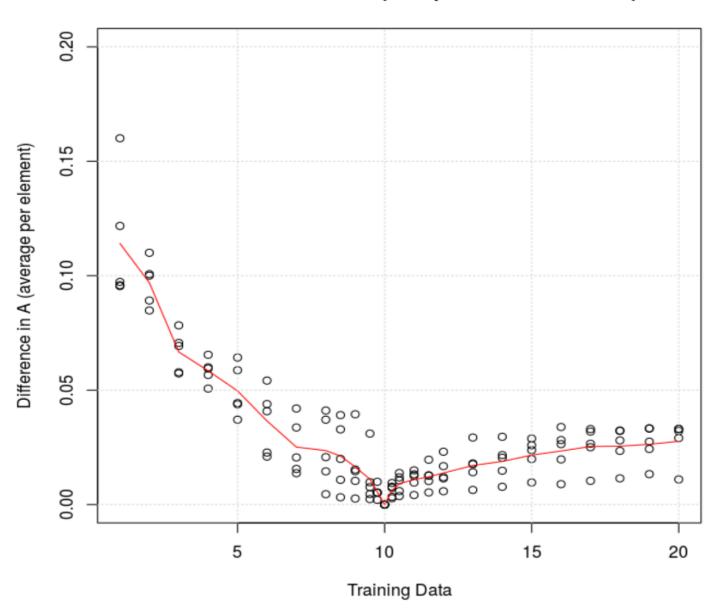


## Model change is statistically significant beyong 10 min:



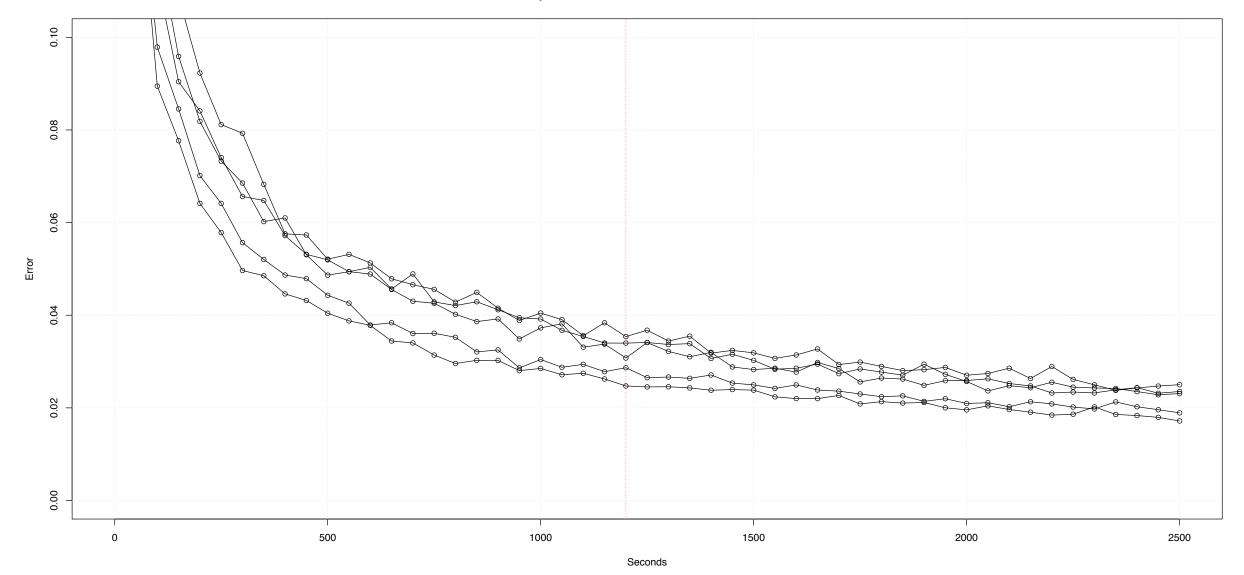
#### T=10 as a trade-off between accuracy and model consistency

#### Difference in A Matrix (Compared to 10 Minutes)



#### Empirical validation of model adequacy

#### Similarity of 'A+B' Matrices of Real and Simulated Data



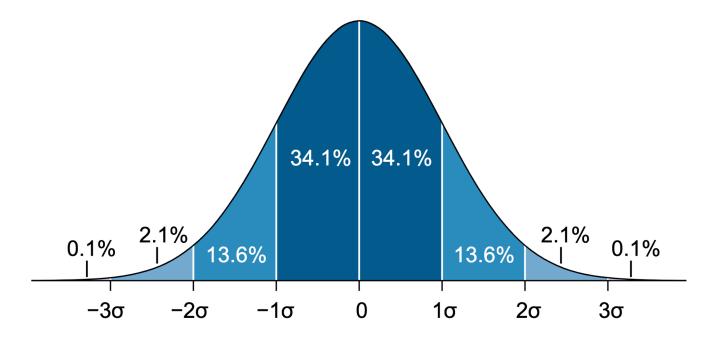
#### Anomaly detection and scoring

Multivariate case: use of Mahalanobis distance

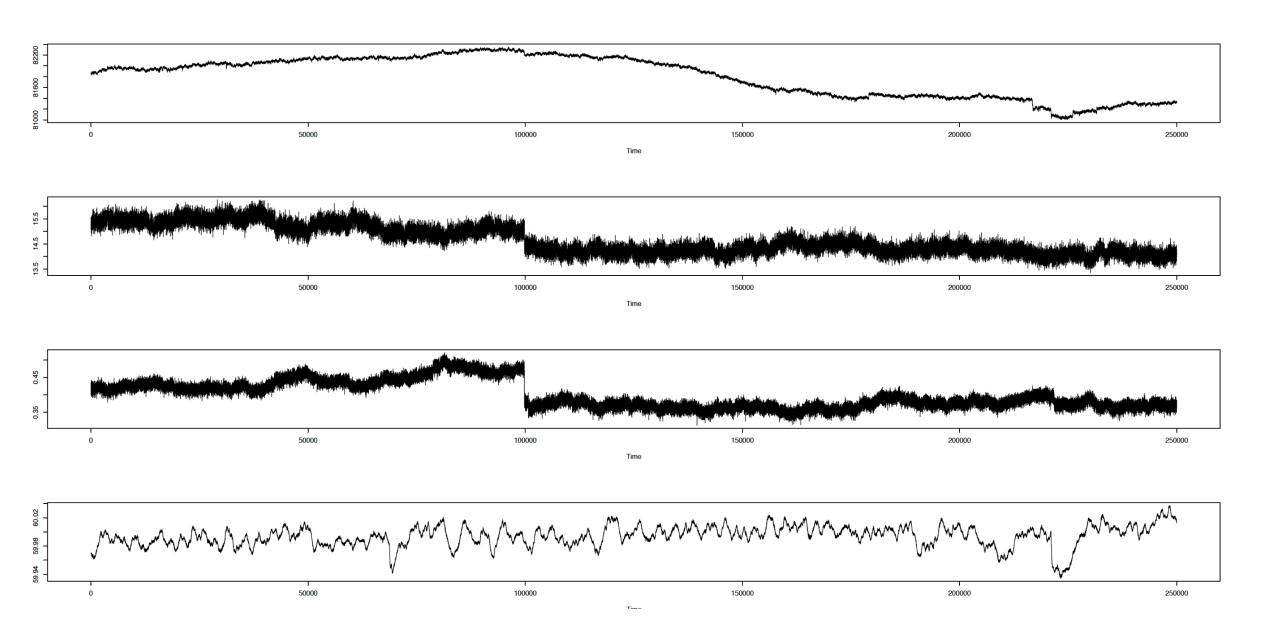
$$X_{t+1} - AX_t = \Sigma \xi_t \propto \mathcal{N}(0, \Sigma^2)$$

$$D_{t} = \sqrt{(X_{t+1} - AX_{t})^{T} \Sigma^{-2} (X_{t+1} - AX_{t})}$$

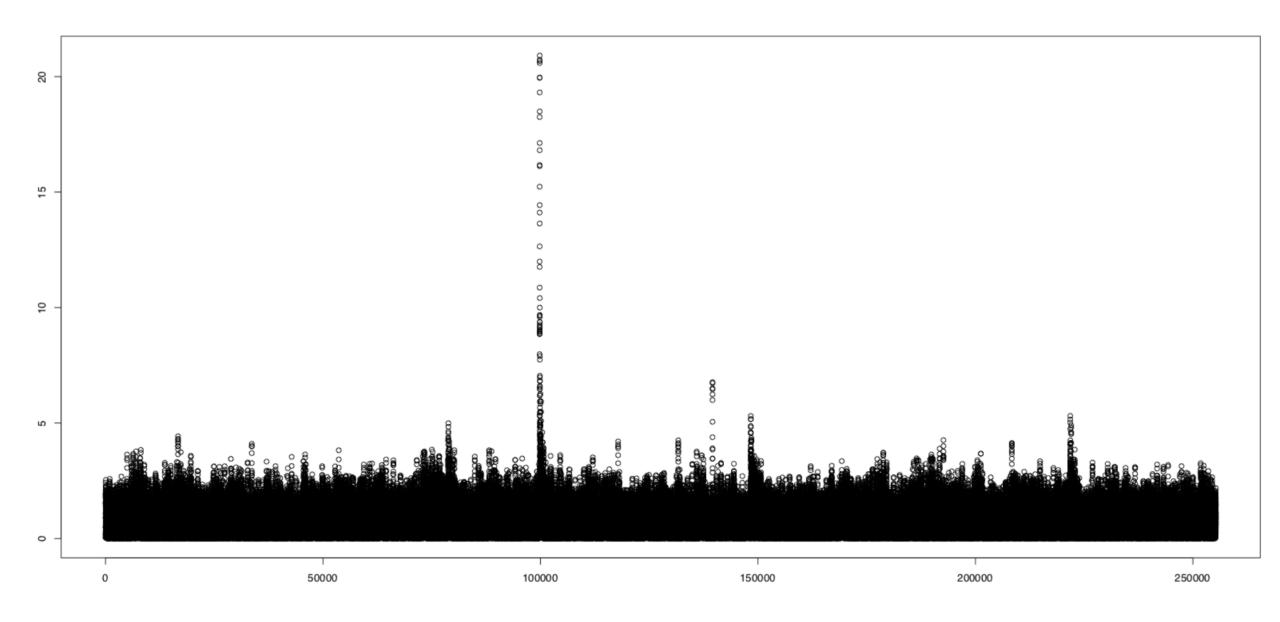
For single streams, use of the conditional distribution, reduction to a simple one-dimensional problem:



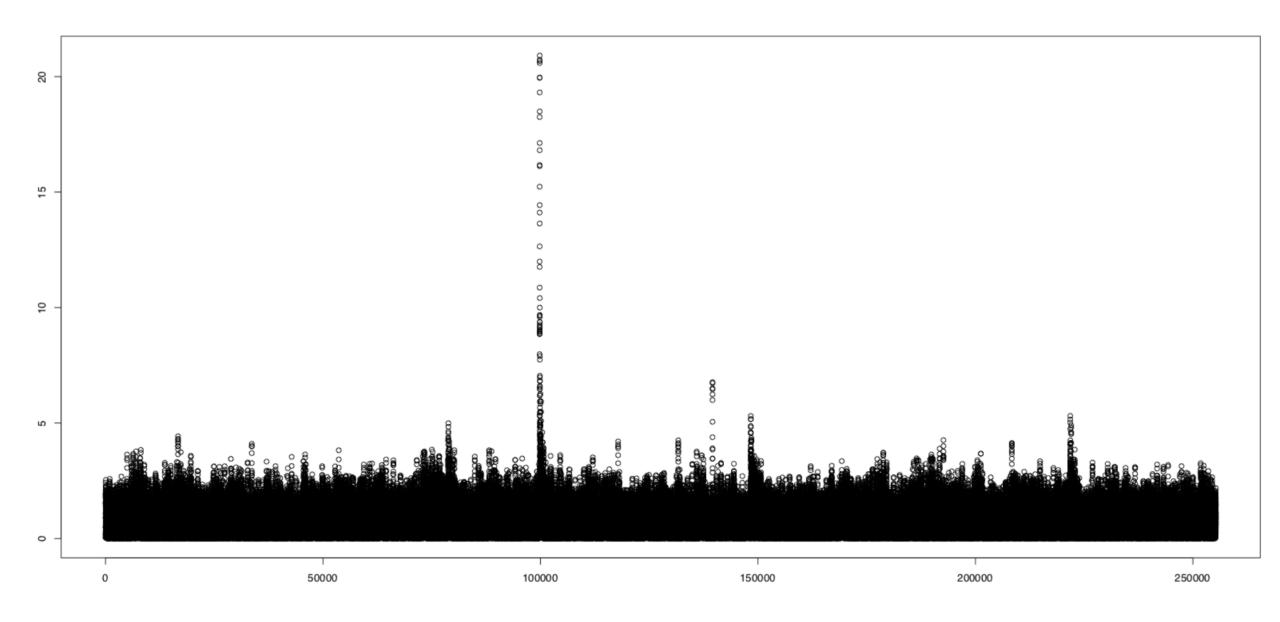
#### Anomaly scoring: one day example



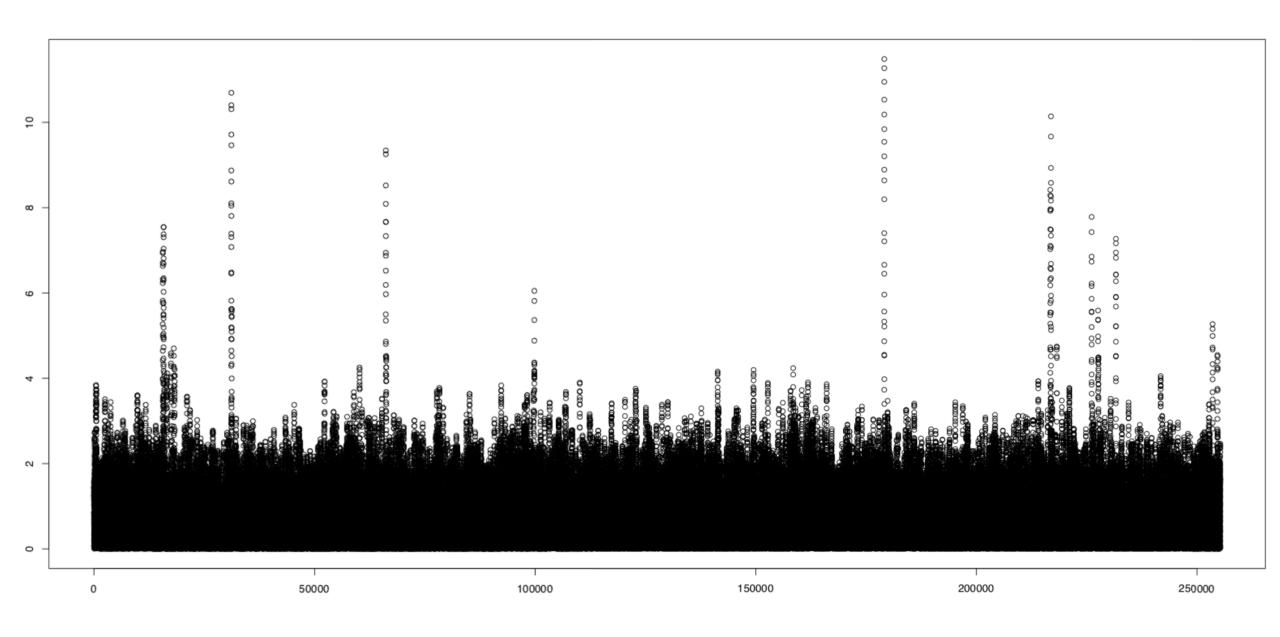
#### Anomaly scoring: current



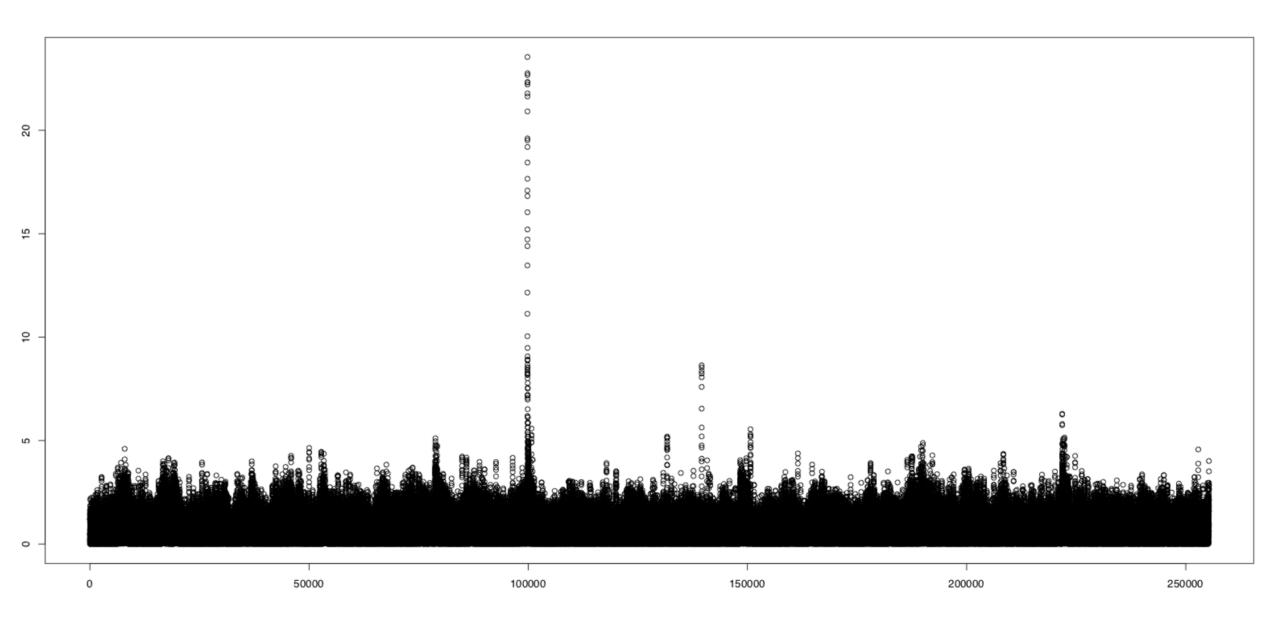
#### Anomaly scoring: current



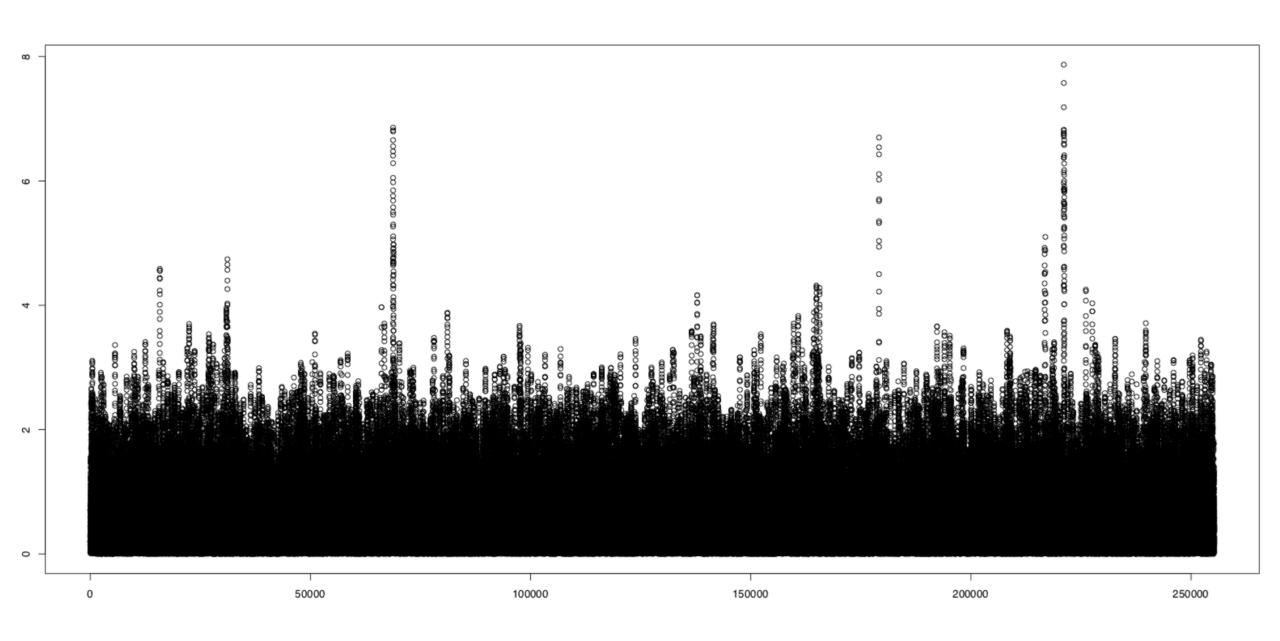
### Anomaly scoring: voltage



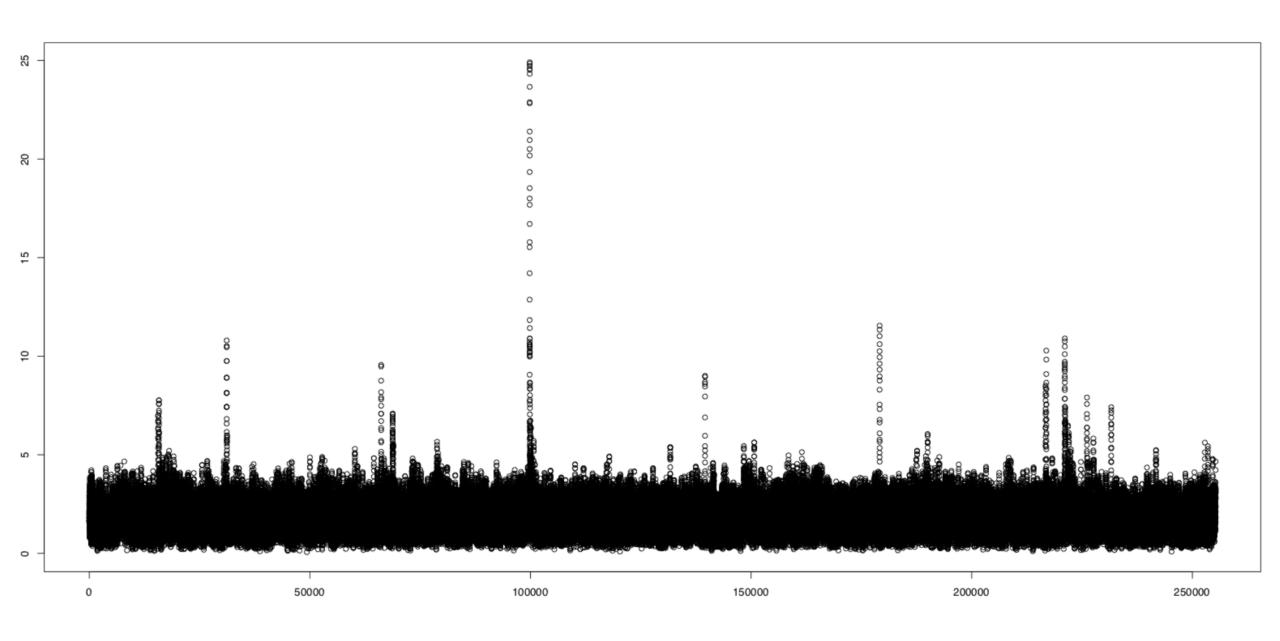
#### Anomaly scoring: angle



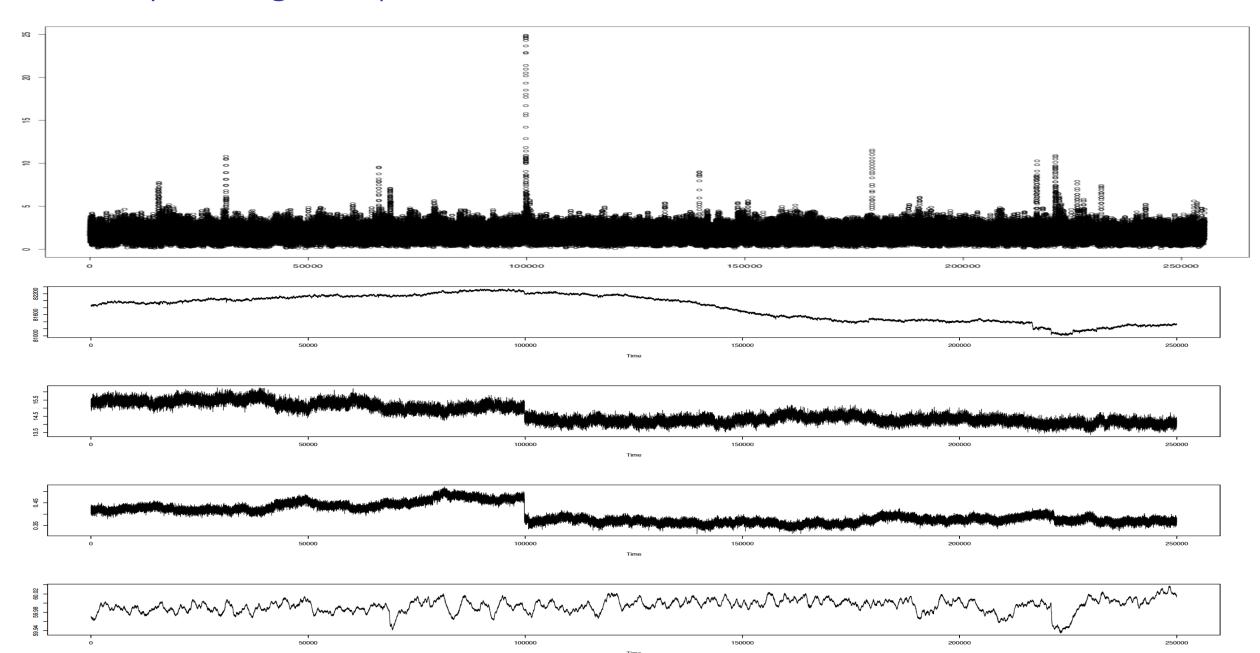
## Anomaly scoring: frequency



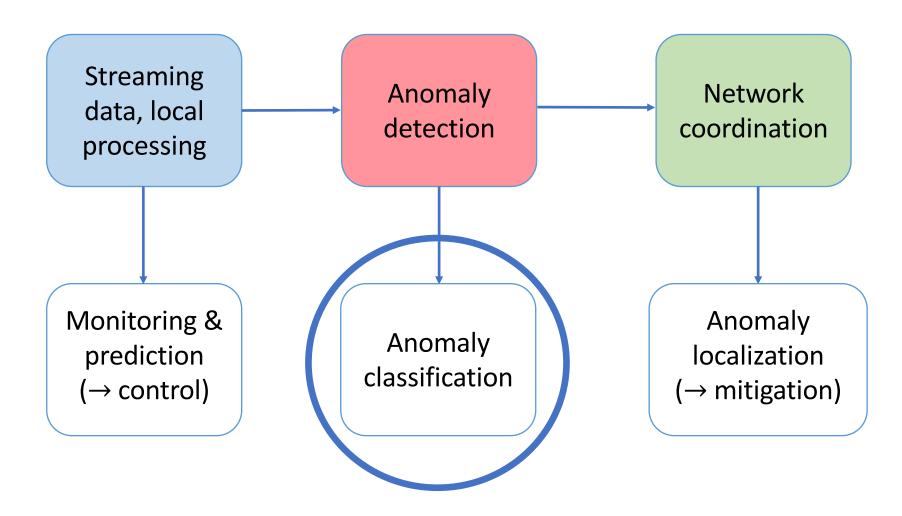
#### Anomaly scoring: multivariate



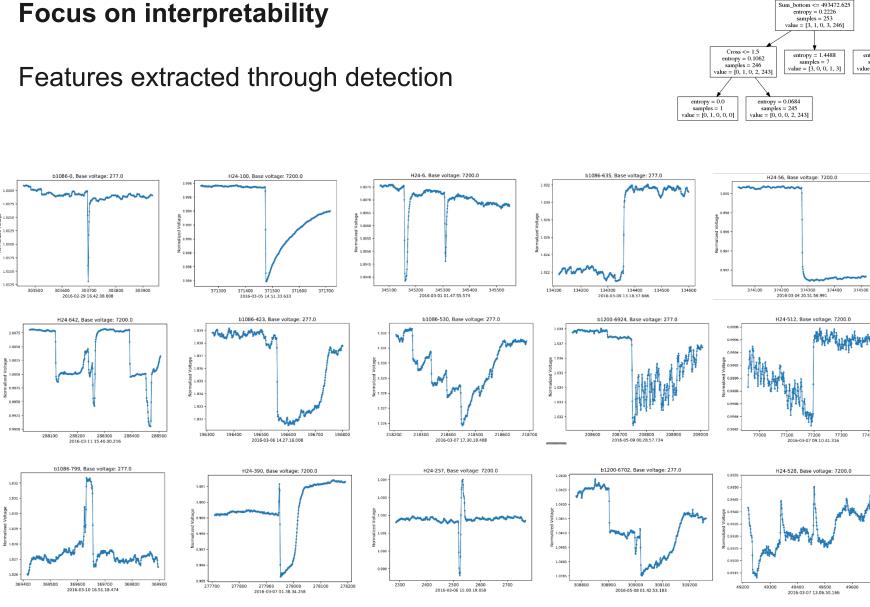
#### Anomaly scoring: comparison with actual time series

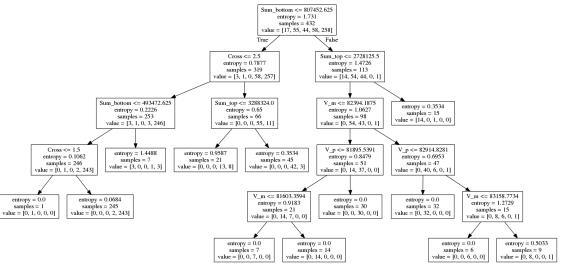


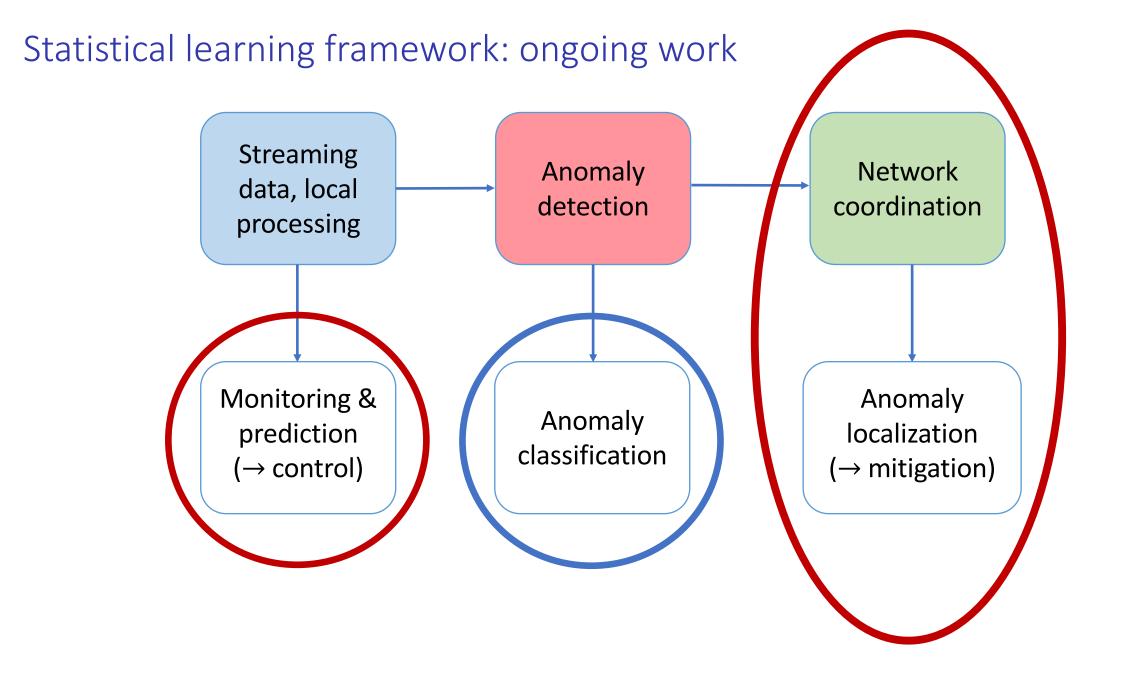
#### Statistical learning framework: anomaly classification (preliminary)



#### Anomaly classification







#### Outlook

> Need **feedback** from NASPI community on the developed framework (constructive critique)

Finalize the work: classification and prediction phases, tests on different data sets (Partner utilities, UC Riverside, Illinois Institute of Technology), software release, update with network-wide algorithms

> Acknowledgement: GMLC project on Machine Learning for Distribution Grids