

A Practical Approach to Streaming Point-On-Wave Data

NASPI Meeting

J. Ritchie Carroll April 17, 2019

STTP Overview

- Created to support control center to control center phasor data exchange, as well as other high-fidelity, high-volume streaming data use cases
- Intrinsically reduces losses (UDP) and latency (TCP) by removing stress of large frame-sizes on networks though data packet optimization
- Allows the safe co-mingling of phasor data with other operational data network traffic rather than having to isolate phasor data on purposeprovisioned networks
- Detailed metadata exchanged as part of protocol helps to simplify configuration management
- Includes lossless compression to reduce bandwidth utilization
- Security-first design with strong authentication and option for encryption

Protocol Difference: Frames vs Atomic Packets

IEEE C37.118 / IEC 61850-90-5

■ <u>STTP – IEEE 2664</u>

NASPI Meeting - San Diego - April 17, 2019

sttp IEEE 2664 3

Protocol Difference: Data Packets Allow for Compression

Publish Command Bytes to IP Layer

DFR Sampling Rates

Digital Fault Recorders (DFRs) capture and analyze point-on-wave data

Typical sampling rates are from 5 to 10kHz (e.g., APP DRF uses 160 samples/cycle = 9.6 kHz)

GPA's tool suite includes software for analyzing captured waveform data

APP DFR in GPA Test Rack

GPA's Disturbance Monitoring Tool Suite

PQ Dashboard

PQDashboard

Features

- The display layer for openXDA data
- Drill-down from widearea data displays all the way to waveforms
- Complements traditional vendorprovided waveform analysis tools

Recent Improvements

New waveform view tool with embedded analytics

sttp IEEE 2664 8

Using STTP for High-Resolution Data Transfer

- Some results -- Synchrophasor and SCADA
 Example: Recent EIDSN Testing
- Real-Time Demo -- 88kSPS (~155 PMUs)
 Example: CD Quality Music (44kHz * 2 signals)
- Real-Time Demo -- 300kSPS (~32 signals of 160 samples/cycle)
 Example: Demodulated Radio Frequency

STTP over EIDSN Demonstration

Purpose

To compare STTP protocol performance to IEEE C37.118

https://www.osti.gov/search/semantic:1504742 https://github.com/sttp/dotnetapi

Approach

- Use the EIDSN as the transport layer
- Use GPA's secure gateway, SIEGate as the test application
- Test performance at differing data volumes

EIDSN Demonstration Test Results

Number of Measurements at 30 points/sec

EIDSN Demonstration Test Results

Number of Measurements at 30 points/sec

CD Quality Audio (~88kSPS)

Demodulated Radio Frequency (~300kSPS)

NASPI Meeting - San Diego - April 17, 2019

sttp IEEE 2664 14

High Speed Graph

NASPI Meeting - San Diego - April 17, 2019

Project Partners

Project Collaborators	Project Financial Partner	Vendor	Utility	Demonstration Host
Bonneville Power Administration	*		♦	
Bridge Energy Group				
Dominion Energy	♦		♦	EPG
Electric Power Group	♦	•		
Electric Power Research Institute				
ERCOT			♦	
Grid Protection Alliance (Prime)	*	•		
ISO New England			♦	
MehtaTech		•		
Oklahoma Gas & Electric	*		♦	WSU
OSIsoft		•		
Peak Reliability			*	
PingThings		•		
PJM Interconnection			♦	EPG
Southern California Edison			♦	
San Diego Gas & Electric	•		♦	WSU
Schweitzer Engineering Laboratories	*	•		
Southern Company Services			♦	
Southwest Power Pool	♦		♦	WSU
Space-Time Insight		•		
Trudnowski & Donnelly Consulting Engineers		•		
Utilicast	*	•		
Tennessee Valley Authority	♦		♦	WSU
University of Southern California				
V&R Energy		•		
Washington State University	•	•		
26	11	11	12	6

