

A Generic and Robust Model Validation & Calibration Software

NASPI Work Group Meeting, April 15-17 - San Diego, CA

Acknowledgement: This work is supported by the US Department of Energy under Award Number DE-OE0000858, leveraging the pioneering work under BPA TI.

GE Grid

Software

Solutions

ISO new england

Honggang Wang, Anup Menon (GE Global Research) Manu Parashar, Krish Srinivasan (GE Grid Solutions) George Zheng (Powertech Labs) Haris Ribic, Feng Dong (GE Energy Consulting)

GE Global

Research

MIS

Midcontinent ISO

Sherman Chen (PG&E) Xiaochuan Luo, Frankie Zhang (ISO-NE)

Powertec

Pacific

Gas &

Electric

GE Energy

Consulting

Peak

Reliability

WAMS-based Dynamic Model Validation & Calibration

Value Proposition

Drivers:

- Inaccurate Dynamic models: Inability to predict grid conditions
 - PG&E case (see figure)
 - BPA experience suggests 60-70% of power plant models did not match disturbance recordings even after the baseline test was performed.
- Mandated Reliability Standards:
 - **PRC-012-2 Remedial Action Schemes** requiring PCs to evaluate existing RAS within its planning area.
 - **NERC MOD-026 and MOD-027** requiring transmission planners and operators to verify generator models (turbine and excitation controls) on a periodic basis.
 - **MOD-033-1 Steady-State and Dynamic System Model Validation** requiring PCs to validate system planning models against real-time system data.
 - Validate Dynamic model for Real time operational studies

Benefits:

- Cost-effective method for TOs and GOs to satisfy NERC Reliability Standards.
- Non-invasive online approach that allows asset owners to continue operating the plant (and realizing revenue) without stopping operations.
- More accurate models for stability analysis => Improved Reliability
- More accurate calculation of system operating limits => Better Asset Utilization

PG&E Colusa case

2

Conceptual Approach

Two Stage Approach for Model Calibration

Design Considerations

- Production-grade software tool
- Generic for wide variety of models (PSLF, TSAT and PTI PSS/E)
- Minimal data flow change on existing tools
- Account for **non-linearity** in models
- Quality of solution with reasonable speed
- Account for multiple different events
- Avoid tuning parameters that may already be at their true values

Stage I: Sensitivity Analysis

Determine most identifiable set of parameters across all events

• Jacobian matrix, A =

$\left[\frac{\partial P(t_1)}{\partial \theta_1}\right]$	$\frac{\partial P(t_1)}{\partial \theta_2}$	 $\frac{\partial P(t_1)}{\partial \theta_k}$
$\frac{\partial P(t_2)}{\partial \theta_1}$	$\frac{\partial P(t_2)}{\partial \theta_2}.$	 $\frac{\partial P(t_2)}{\partial \theta_k}$
$\frac{\partial P(t_N)}{\partial \theta_1}$	$\frac{\partial P(t_N)}{\partial \theta_2}$	 $\frac{\partial P(t_N)}{\partial \theta_k}$
$\frac{\partial Q(t_1)}{\partial \theta_1}$	$\frac{\partial Q(t_1)}{\partial \theta_2}$	 $\frac{\partial Q(t_1)}{\partial \theta_k}$
$\frac{\partial Q(t_2)}{\partial \theta_1}$	$\frac{\partial Q(t_2)}{\partial \theta_2}$	 $\frac{\partial Q(t_2)}{\partial \theta_k}$
$\frac{\partial Q(t_N)}{\partial \theta_1}$	$\frac{\partial Q(t_N)}{\partial \theta_2}$	 $\frac{\partial Q(t_N)}{\partial \theta_k}$

Sensitivity

genrou	genrou@PALVDGEN_24_UPLGEN2@7312@1 genrou@PALVDGEN_24_UPLGEN2@7312@2
	genrou@PALVDGEN_24_UPLGEN2@7312@3
exst	exst@PALVDGEN_24_UPLGEN2@7312@1
	exst@PALVDGEN_24_UPLGEN2@7312@2

exst@PALVDGEN 24 UPLGEN2@7312@3

iceeg1@PALVDGEN_24_UPLGEN2@7312@1 iceeg1@PALVDGEN_24_UPLGEN2@7312@2 iceeg1@PALVDGEN_24_UPLGEN2@7312@3

pss2b pss2b@PALVDGEN_24_UPLGEN2@7312@1 pss2b@PALVDGEN_24_UPLGEN2@7312@2 pss2b@PALVDGEN_24_UPLGEN2@7312@3

Data shown: genrou@PALVDGEN_24_UPLGEN2@7312@3

	Property Nan	ne	Score
0	xcomp	- I.	0.0700
0	lapped		0.2800
0	s12		0.9390
	ld		2.1900
	lq		1.8600
	todo		10.0000
	led		0.3700
0	lpq'h		0.5640
0	tpqo		3.8310
ά.	Ш		0.4799
	fa		0.2199
0	todo	1	0.0032
	s1		0.1809
	tppqo		0.0548
0	lppq	1	0.0549

- Rank deficiency of A can result from:
 - (1) very small entries in columns of A
 - (2) columns of A being nearly linearly dependent

Stage II - Multi-Event Calibration

Performance (in r.m.s. terms) of events calibrated for only one event (in corresponding column) evaluated against all other events (listed in the rows). It shows the generator parameters tuned by single event could not explain other event very well.

Models and data sets obtained via NASPI-NERC model verification workshop, 2016*

2 orders of magnitude reduction from initial error 1 order of magnitude reduction from initial error reduction from initial error

Increase from initial error

											luned	luned	luned	luned	luned
				Tune d for	Tuned for	for	for	for	for	for					
Event no.		True set	Def	event 1	event 2	e vent 3	event 4	event 5	event 6	event 7	event 8	event 9	event 10	event 11	event 12
1		0.19	2.80	2.33	3.06	1.83	3.36	49.35	52.00	49.04	47.79	49.51	5.78	49.93	2.00
2	Ī	0.28	1.34	2.14	0.28	0.98	2.81	2.09	0.50	0.31	0.68	2.37	0.64	5.15	1.03
3	I	0.03	1.23	1.07	2.31	1.00	1.55	27.93	28.24	27.76	12.05	28.08	3.23	28.07	1.12
4		0.35	2.64	2.73	2.13	1.90	3.16	35.59	41.91	33.80	34.07	35.23	2.03	36.46	2.34
5	I	4.15	3.10	4.44	3.07	4.20	5.21	0.76	8.07	1.38	5.03	0.62	6.48	1.02	4.00
6	Decomo	0.29	1.56	2.27	0.29	1.10	2.92	3.40	0.55	0.38	0.46	2.59	0.62	6.54	1.15
7	Perrims	20.49	14.68	24.23	16.28	23.15	30.12	4.06	3.17	2.73	26.27	7.14	37.09	14.11	20.27
8	I	0.03	0.99	1.02	1.62	0.88	1.45	18.19	18.39	18.07	1.08	18.37	2.58	18.42	0.91
9	I	1.14	4.82	5.56	0.75	2.69	6.60	20.02	18.78	15.99	16.52	19.47	1.65	21.76	3.30
10	I	0.24	1.12	1.45	0.22	0.65	1.74	1.95	5.69	0.99	0.45	1.51	0.49	2.15	0.86
11]	0.01	0.27	0.29	0.32	0.23	0.88	1.85	5.63	2.25	0.39	0.36	0.49	2.09	0.35
12		0.02	0.62	0.54	0.85	0.51	0.80	12.39	12.43	12.23	0.88	0.84	2.01	12.41	0.51

Multi-event Calibration-Preliminary Results

2 orders of magnitude reduction from initial error 1 order of magnitude reduction from initial error reduction from initial error Increase from initial error

Obvious solution: run calibration simultaneously on all events of interest strung together but this comes at the cost of computational expense and engineering involved in enabling running a batch of events simultaneously.

Our solution: carry some essential information from the earlier calibrations runs and guide the subsequent calibration run that helps explain the new disturbance without losing earlier calibration matches.

Performance of estimates from the sequential estimation approach for the gas plant case shows the proposed approach effectively reduce the overall error across all events.

				Sequential	Sequential
				Sequential,	Sequential
Europet no.		Turrenet	Def	forgetting	without prior
Event no.		True set	Der	$\frac{1}{1}$	weight
1		0.10	2.90	1.02	0.28
		0.19	2.80	1.02	0.38
2		0.20	1.54	0.52	0.23
3		0.05	2.64	1.00	0.37
5		4 15	2.04	2.00	3 72
5		4.13	1 56	0.25	0.20
7	Perr rms	20.49	14.69	10.33	10.30
, 8		0.03	0.00	0.47	0.18
<u> </u>		1 1/	1.82	1 17	0.13
10		0.24	1 12	0.27	0.85
10		0.24	0.27	0.27	0.23
12		0.01	0.27	0.10	0.04
		0.02	0.02	0.25	0.00
1		0.21	1197.90	2.71	0.91
2		0.04	60.99	0.29	0.03
3		0.22	995.61	3.25	0.69
4		0.46	1370.90	27.41	10.48
5		0.13	215.22	1.24	0.38
6	_	0.03	41.74	0.54	0.10
7	Qerr rms	0.92	1856.30	9.45	0.69
8		0.26	668.64	3.18	0.38
9		0.43	2613.00	304.42	6.79
10		0.07	57.92	5.16	0.81
11		0.05	63.22	0.93	0.15
12		0.12	474.97	0.18	0.08
	delta p 2-ı	norm		12.2178	15.9934
	delta p inf	f-norm		9.2333	14.402

Implementation & Demonstration

Software Implementation-Generality & Robustness

• Dynamic simulation engine

- ✓ GE's PSLF
- ✓ PowerTech's TSAT

System Configuration

- ✓ PMU at POI
- ✓ PMU at Generator Terminal

Steady state & Dynamic model

- ✓ EMS-operational model
- ✓ System planning model

Phasor Data

- ✓ e-terraphasorpoint/openPDC/openHistorian
- ✓ JSIS CSV files/COMTRADE files/PI historian

Demonstration Using US WECC Model

* Note: Synthesized PMU data using Dynamic Model

Courtesy WECC

MasorAnalytics

Parameter Selection

🗽 Select Tunable Parameters

M Select Tunable Parameters								_		×	
Calibration			Paran	neters for : genrou@PALVDGE	N_24_UPLGEN3@7313@3						
Select parameters to calibrate			User sensitivity score to identify most sensitive parameters. Use min, max values to specify limits								
				Property Name	Score	Actual Value	Min Value	Max Value			
PALVDGEN_24_UPLGEN3	wsccst	(7)	\checkmark	xcomp	0.6297	0.0700	-9999.0000	9999.000	0		
	exst3a	(7)	\checkmark	lppd	0.3308	0.2800	-9999.0000	9999.000	0		
	ieeeg1	(3)	\checkmark	tpdo	0.3040	10.0000	-9999.0000	9999.000	0		
	nss2h	(12)	\checkmark	lq	0.2679	1.8600	-9999.0000	9999.000	0		
PALVDGEN_24_UPLGEN2	aenrou	(12)	✓	ld	0.1787	2.1900	-9999.0000	9999.000	0		
	ieeeg1	(3)	~	s12	0.1725	0.9390	-9999.0000	9999.000	0		
	exst4b	(2)	✓	s1	0.1717	0.1810	-9999.0000	9999.000	0		
	prc ² h	(12)	✓	I	0.1205	0.2200	-9999.0000	9999.000	0		
PALVDGEN_24_UPLGEN1	genrou	(13)	✓	lpd	0.0967	0.3700	-9999.0000	9999.000	0		
	ieeeg1	(3)	~	h	0.0648	3.8310	-9999.0000	9999.000	0		
	exst4b	(2)		lpq	0.0283	0.5640					
				tppdo	0.0277	0.0330					
				tpqo	0.0276	0.4800					
				tppqo	0.0095	0.0550					
				ra	0.0042	0.0036					
				lppq	0.0000	0.2800					
		[6-	ancel					Process		
		L	Ca						rioceed	<u> </u>	

Calibration - Progress

w Paramet	er Optimi	zation Dialog	J											— 🗆	×
Calibra	ation					350						Iteration	Residuals	Delta	
Results can	take a fev	v minutes to	display.									1	356,109		Ê
PALVDGE	N_24_U	PLGEN3			Î							2	318.464	37.6449	
xcomp	Score	Actual	Min	Max	Calibrated	300						3	300.656	17.8077	
		Actual	-9999.0000	3333.0000	Calibrated							4	214.187	86.4693	
lppd	0.331	0.2800	-9999.0000	9999.0000	0.1952	250						5	190.081	24.1055	
	Score	Actual	Min	Max	Calibrated							6	169.072	21.0091	
tpdo	0.304	10.0000	-9999.0000	9999.0000	12.0469							7	135.121	33.9513	
lq	Score 0.268	Actual 1.8600	Min -9999.0000	Max 9999.0000	Calibrated 2.2621	<u>1</u> 200	\rightarrow		eretiene Con			8	62.484	72.6368	
	Score	Actual	Min	Max	Calibrated	A len				RATION	ig	9	57.281	5.2038	
ld	0.179	2.1900	-9999.0000	9999.0000	2.7063	Resid						10	15.702	41.5787	
c12	Score	Actual	Min	Max	Calibrated	150						11	13.976	1.7255	
512	0.172	0.9390	-9999.0000	9999.0000	0.0928							12	13.974	0.0026	
s1	Score 0.172	Actual 0.1810	Min -9999.0000	Max 9999.0000	Calibrated 0.1808	100						13	12.783	1.1905	
	Score	Actual	Min	Max	Calibrated				\mathbf{N}			14	11.173	1.6103	
Ш	0.120	0.2200	-9999.0000	9999.0000	0.2167							15	8.045	3.1276	U
Ind	Score	Actual	Min	Max	Calibrated	50		\				16	7.073	0.9727	
ipa	0.097	0.3700	-9999.0000	9999.0000	0.3813							17	6.461	0.6120	
h	0.065	3.8310	-99999.0000	9999.0000	5.5396			` <u>`</u>				18	6.168	0.2930	
	Score	Actual	Min	Max	Calibrated		5	10	15	20	25	19	4.940	1.2279	
tq	0.546	2.0000	-9999.0000	9999.0000	2.7332				Iteration			20	4.066	0.8736	÷
						Cancel							Stop	Finish	

13

Calibration - Results

Calibrated Parameters

PG&E test case

- 1040 Pacific DC Intertie rate of change activated . Plant info: GE's 2 GT and 1 ST, GE's Generators and GE's Excitation system EX2100. Siemens' three step-up Xfmrs.
- Both PSLF and TSAT has to add an impedance to handle PMU located at generator terminal.
- Identified need to define the high/low bounds of parameter before calibration.

ISO-NE test case **ISO**

- MV&C using TSAT engine is being verified using a Power plant under ISO-NE foot print
- Dynamics observed is because of another generator trip nearby
- Mismatch observed is mainly in the active power
- Makes a case for tuning governor control

Conclusion

- Lesson learned and new feature for production grade MVC software
- A sequential estimation approach designed and verified using multiple event data
- Model Validation and Calibration software tested using field data from PG&E and ISO-NE

Next Step

- Validate multi-event calibration approach against real test data
- Model Calibration field tests at PG&E and ISO-NE, June
- DOE Peer Review, June 12-13, Washington DC

Presentations/Publications

- IEEE PES Innovative Smart Grid Technologies (ISGT) Conference, February 2018 *Presented paper* on model parameter identifiability analysis titled, "Synchrophasor based dynamic model validation leveraging multiple events"
- 2. i-PCGRID Workshop, March 2018 *Presentation* on synchrophasor applications being developed on this project
- 3. NASPI Work Group Meeting, April 2018 *Presentation* on Fast Voltage Stability Assessment algorithm
- 4. GE Grid Solutions User Group Meeting, June 2018 *Presentation* on synchrophasor applications being developed on this project
- 5. IEEE PES General Meeting, August 2018 *Presented paper* on the developed model validation/calibration algorithm titled, "Towards a commercial-grade tool for disturbance-based model validation and calibration."
- 6. NASPI Work Group Meeting, October 2018 *Presentation* on model validation/calibration algorithm integration into the PhasorAnalytics with a live demonstration.

Thanks the team!

Carol Painter: DOE Project Officer Phil Overholt: DOE program mgr. Jeff Dagle: Technical advisor from PNNL

Utility Partners

Honggang Wang: PI Alex Santos: Contract manager Na Jing: Financial Analyst

Developers

Lead FAT and field demos, Develop model cal., AGM and operator guidance software tools; Model val./cal. platform integration of PSLF & TSAT with WAMS product

Manu Parashar Anil Jampala Saugata Biswas Krish Srinivasan Russ Frizzell-Carlton Vijay Sukhavasi Development of model calibration techniques, e angle-based grid prm management, factory acceptance testing

> Honggang Wang Phil hart Mustafa Dokucu Jovan Bebic Chaitanya Baone Anup Menon Naresh Acharya Yan Pan

GE Global Research

Model validation/ calibration platform integration of PSLF with WAMS product

Haris Ribic Juan Sanchez-Gasca Brian Thomas Develop APIs to enable Communication between WAMS product and PSLF Powertech

Model validation/ calibration platform integration of TSAT with WAMS product, assist with AGM

George Zhang Develop APIs to enable Communication between WAMS product and PSLF

Provide cost share, test data and models, assist/host applications in QA environment, **Field tests**

Keith Mitchell Field demo for AGM and operator guidance.

Provide cost share, test data and models, assist/host applications in QA environment, **Field tests**

Sherman Chen Field demo for Model Validation/ Calibration tool. Provide feedback on developed Applications

ISO new england

Xiaochuan LuoHongming ZhangFrankie ZhangAlex NingField demo for ModelTechnical advisorValidation/ Calibrationtool.

Peak Reliability

Provide feedback on

developed

Applications

20