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Introduction
e Founded in Dec. 2013 in Santa Clara, California, USA (www.geirina.net)
e Conducts cross-disciplinary R&D for power system modernization
o R&ND subsidiary and overseas platform of State Grid Corporation of China
o ~50 Researchers and Engineers (70-80 in summer)
o Mentored over 60 graduate students in the past 3 years
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http://www.geirina.net/
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Grid Sense: 10T+X Leveraging GEIRINA Grid Eye: SA platform that GEIRINA Grid Mind: Data-driven
edge computing for enhanced has been running in the provincial/state- autonomous grid dispatch and control
system SA and control level system for the past 36 months platform with self-learning capability
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“For more information, please check: www.geirina.net/research/2
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Outline

 Background and motivation

« Autonomous grid dispatch and control based on PMU measurements
* Deep Reinforcement Learning
« Autonomous voltage control
* Demo

« How to architect/tune an effective self-learning agent?

« Discussion/other applications
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Net load - March 31

TRANSMISSION GENERATION

The well-known
Californian duck
curves showing
abrupt changes in
system net load

Mogawats

Frequency Deviations Across New York - New Jersey, 8114103, by zip code

Credit: California 1ISO /
Jordan Wirfs-Brock
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Grand challenges: the increasing dynamics Need for accurate and fast wide-area
and stochastics in the modern power grid, monitoring system to detect potential issues

making it difficult to design and implement
optimal control actions in real time

« Increased penetration of renewable energy

* PMU coverage is increasing, but still limited
« Known data quality issues affect apps
e Lack of preventive measures to mitigate

» Demand response operational risks

* New market behavior Need for effective optimal control

» Energy storage suggestions in real time to support operators
« Experience/model based control « Most operational rules are offline determined

suggestions using limited studied cases are

either conservative or risky for operation « Either by experiences or projected S|mulat5|ons




The Gap CEIRINA

» Past efforts were mostly focused on enhancing/increasing grid situational awareness using advanced
modeling, various data analysis approaches, machine learning, etc.

» Very few WAMS apps can instruct operators what to do in real time due to the lack of effective
approaches that can transform massive amount of measurements directly into actionable decisions in
real time.

Power Systems «

A

l—' PMUs

Synchrophasor

Updated every _/‘ measurements

fraction of a sec -
Situational Awareness
... —» Decision —»| Action —
Perception( Comprehension Projection

_ ) Operators are HARDLY Real-time decisions/actions
Conducted by machine(s) in involved; decision making  are very difficult, if any, only
fraction of sec. to seconds. from seconds to mins. for post-event analysis.
[ Potential apps of WAMS are limited, and GEIRINA wish to bridge this gap.

FUNDING OPPORTUNITY ANNOUNCEMENT

L On Sept. 25 2018, DOE announced investments to improve resilience and
reliability of the nation’s energy infrastructure using PMU measurements
and big data, Al, machine learning technologies. bepartment of nergy (00E)

Office of Electricity (OE)

v' «...to inform and shape development and application of fast grid analytics and BIG DATA ANALYSIS OF SYNCHROPHASOR DATA

Funding Opportunity Announcement (FOA) Number: DE-FOA-0001861

sub-second automatic control actions that preclude costly cascading grid OUtAZES” coumumber stz cecorors wowen o ey ey, nessrcn

v «...PMU-based automated controls, better grid asset management, and real time
monitoring for modeling...” P

March 2019




The Grid Mind Vision

« Grid Mind: A measurement-driven, grid-interactive, self-evolving, and open
platform for power system autonomous dispatch and control.

L In the short term, we want to duplicate an example of AlphaGo Zero in power systems.
U In the mid-term, Grid Mind serves as an assistant to grid operators.
O In the long term, Grid Mind will be the core of power system operation ROBOT.

Now

Goal: To develop a to

measuremeny scaoa
_|_ |
E-]

Goal / Future

l—' PMUs [«

Synchrophasor
measurements

Power Systems

dL
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Situational Awareness

Power Systems

UT UIIdat Ldll tLariniIvuriIIli
actionabre decisions in real time.

A .

» Decision
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Action

massive amount of

)

e __ _ _ __] —kmage, — — JReinfarcement. _ _ -
Linear/nybrid | _Grid States Video, text, feedback |

SE etc. |
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Offline training
using HPC

Execute in sub-second
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Outline

« Autonomous grid dispatch and control based on PMU measurements

* Deep Reinforcement Learning



ML in a Nutshell

Supervised
Learning

error target
labeled
data
—>

In Out

Application

v’ Classification
v Predict a target
numeric value

Common Algorithms

o k-Nearest Neighbors
o Linear Regression
o Decision Trees

o Nawe Bayes

o SVM

o Neural Networks

Credit: Elena Mocanu, TU/e

Unsupervised
Learning
unlabeled
data
In Out
Application
v Clustering

v’ Visualization

v Dimensionality
reduction

v" Anomaly detection

Common Algorithms

o k-Means

o Hierarchical Cluster
Analysis

o Principal Component
Analysis

many unlabeled &
few labeled data

In Out
Application

v Google Photos
v Webpage classification

Common Algorithms

o Combination of
unsupervised and
supervised learning
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Reinforcement
Learning

reward environment

& state
R | ;

In Out 7~

Application

v DeepMind’s AlphaGo
v Fire-extinguish robots
v" Grid Mind

Common Algorithms

o Dynamic programming
o Monte Carlo
o Temporal Difference
(TD)
v' Q-Learning
v SARSA
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 Learn what to do and how to map situation to action.

[ Poppy’s example.

 The RL system: agent and environment. At
each time step t : Observe

Route,
* The agent mateil
v'1) executes action a, my tone...
v'2) observes states s,
v'3) receives a scalar reward r,

Step in apd stay

 The environment
v'1) receives action a,
v'2) emits states s,
v'3) issues a reward ry,,

vy

J Reinforcement function

« Trial-and-error interactions states | [reward _
. . . . St Tt actipn

« Mapping states/action pair to reinforcement

« Maximization of the sum of reward/value

A

L Environment

10
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RL Agent

 An RL agent may include one or more of the following components:

* Policy: agent’s behavior function
v" A map from state to action
o Deterministic policy a = m(s)
o Stochastic policy m(als) = P(als)
 Value function: prediction of future reward
v How much reward can be obtained if | perform action a in state s
* Model: agent’s representation of the environment
 Q-value function gives expected total reward
v from state s and action a
v" under policy
v" with discount factor vy
Q"(s,a) = E(rey1 + ¥Ta2 + Vz?"t+3 + s, a)
 An optimal value function is the maximum achievable value

Q*(s,a) = maxQ (s,a) = QT[*(S, a)

11



Q-Learning GEIRINA
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Example: Mouse vs Cliff!

age: 1739856 [delay=1]

Blue-mouse
Red-cliff
Green-cheese

{up, down, right, left} position/location
QTable. "~ o
|0 S] 52 53 ss |
ap|| +1.53 +0.97 +0.83 -0.53 -0.02
arl| 219 | 4385 |-124 | 4+0.62 | +0.19 | ...
QEA) — QE.2) T e[ -023 [+539 [+062 [[v2a0 | 082 | .. T T +2.49
az(| +0.18 +1.43 +0.65 +4.32 +1.83

- So

% O @ -

A Q) — @ O O @ e 4249
.0 O 0 ©-
.o O 0O ©-

12
lhttps://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-g-learning/



https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/
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Deep Learning in a Nutshell

 Deep learning is a general-purpose framework for representation learning
« Given an objective

Learn representation that is required to achieve objective

Directly from raw inputs

Using minimal domain knowledge

Represent the world using nested hierarchy of concepts (each using simpler ones)

Why deep learning Machine Learning
0 | ® -~
Deep learning & — h — —> —e
®
: \]
g Input Feature extraction Classification Output
g
o Deep Learning
> Ca
@
How do data science techniques scale with amount of data? Input Feature extraction + Classification Output

Source: https://towardsdatascience.com

13
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Deep Reinforcement Learning (DRL)

O DRL=DL+RL
1 DL is a general-purpose framework for representation learning

O RL is a general-purpose framework for decision-making in a dynamic
environment

 We seek a single agent that can solve a human-level task
 RL defines the objective
DL gives the mechanism
« RL+DL - general intelligence

J Use deep neural networks to represent
* Value function
* Policy
* Model

14
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Outline

« Autonomous grid dispatch and control based on PMU measurements

« Autonomous voltage control

15
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(Considering load variation, renewable intermittency and contingency conditions)

________________________________________________________________________________________________

Obijective:
. Maintain steady-state voltages at all buses within the range of 0.95-1.05pu after |
. disturbance(s) or contingencies from any given initial operating point. 5

BUS v Change generator voltage set point | All bu§es_
Voltages | \Voltage | v/ Switchable shunts on & off || stay within
Controller | v Adjust transformer tap ratios a secure
range
\Jang Y,

~ Increasing complexity, e.g., renewable energies
Challenges for | |ncreasing scale, e.g., wide-area power systems
conventional < _ _ :
technologies High nonlinearity, e.g., nonlinear loads

. Fast response speed, e.g., power electronics

16



DRL Formulation for AVC

GEIRINA

GEIRI NORTH AMERICA

Firstly, let’s define V; as the voltage phasor of bus i (including both magnitude and phase angle).

V; of buses
of interest

P, Q of
branches

Control objective
All V;’s (of interest) stay within normal operation zone

App of Grid Mind

DRL Generator voltage
> - Agent set points
’ [0.95, 0.975, 1.0,
states reward / 1-0251 105] ’
S; T actipn
e+t at Shunt cap value,
S _ transformer tap,
» Environment [« etc.
St+1

17
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AVC Training Algorithm

Control objective
All V;’s (of interest) stay within normal operation zone

Generator voltage set

points / DRL agent for AVC ﬂ,{ Environment |
/DQN: I & & R

DQN (discrete): [0.95, | caicyiate control action L Reward | | State ‘\

0.975, 1.0, 1.025, 1.05] | using a=argmaxQ(s|¢”) with
\decaying e-greedy policy ) Update DRL agent V; of buses
[?QN' i} of interest

DDPG (ContanOUS): 6DPGZ \ 4_ Q(S,a)<—Q(S,a)+a[R+;/maXQ(s‘,a')—Q(s,a)
0.95-1.05 Calculate control action |
using a=u(s|¢") with DDPG:l
\decaying random noises ) (V. zWZW,@(Sn’v‘)%M(S|«9") P, Q of
S N CO = —"  branches
App of Grid Mind B
/ Off-line A A On_-l!ne
training / / training
i I | | ’ > gested Supervisor
Control action ; ; action
Grid Mind (DRL Agent) “Expected »| \erification
State & y 7 performance
Reward (/
| Implement
Grid Simulator  L— Power Grid ~e—Strelecton

18
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DRL Formulation for Voltage Control-Reward

A

Diverged solution 1 Large penalty
a2 1.25 _
GEJ Violation zone Negative reward ~—eo
S 1.05 s :
= o o ° Normal operation zone
s 10
(40}
E 095 ° ° °
[¢B)
& Violation zone | Negative reward —°
;; 0.8
Diverged solution Large penalty 2

Buses of interest in a power system

Large reward (+Rp), V V; € normal operation zone

Reward at one iteration={ Large penalty (—P,), 3 V; € diverged solution
Negtive Reward (—Ry), 3 V; € violation zone

Final Reward =Sum(Reward)/number of iterations

19
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Testing Condition

*|IEEE 14-bus System

2. for Episode i
3. p(i+1)=0.95p.(i)

e o o o o e e e e e e e e e e e e e e e e e = e e e e e e e e e e e e e e e e e e e e e

e Active load: 259 MW
* Reactive load: 73.5 MVAr

) 10k episodes (created randomly)
S = *60%~120% random load change
B A single-NN DQN agent
_ «2 layers with 20 neurons/layer

_ *Without using regularization

al ) =Y 120 action space (permutation of 5
choices)
Testing;ystem: IEEE 14-Bus system

System Info.
14 buses T So'it learns from the scratch ;
» 5 generators : e . : :
e 11 loads ' 1. Initializing the prot_)ablllty of using i
e 17 lines | random control actions to be |
« 3 transformers | p.(0)=1
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60%-120% random load changes are applied to each episode

Either no violations

or 1 iteration step Test on 10k new cases

Learning from scratch

T - - X X
o5 | 2 iteration steps o5k
'CEG 0 3iterationsteps F *r
S w6 “ =
m RXER RARX A X A gy
X . >
75 r 75
of 5 iteration steps X
T i a0 W am w0 oo 700 w0 s o ) W0 00 300 40 5000 6000 7000 800 9000 10000
Episode Episode

After 10,000 episodes’ learning, the designed DQN agent starts to master the voltage
control problem by making decisions autonomously.

21



A Closer Look at the Results

100

95 -

Either no violations

e o e e e il i

i Two actions taken
1
@&-)mm—)th SRR 0K

GEIRINA
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PR
90 ; ! '
o \ | Three actions taken 1 '
=S n, . 60%-120% random
85 - \ 1 | .
R T . System load changes :
O so - \ \ | !
\\ . 0 memmmmeeecccccccccooooo-----
\ 1
75 \ 1 . -
A . Five actions taken
70 \\ ll
\ 1
65 1 1 \\\ 1 1 1 ll | 1 1 1 1
0 1000 200@\ 3000 4000 5000'l 6000 7000 8000 9000 10000
\ . 1
. Episode Actions — Vset (Eplsode 8 and 5000)
\ 1
\\\ \ genl usetgenz uset gen3_vset genb USEthHE vset episode
| I Tl T e I i Tt S e
\ ; 1« 1.05 . 1.025 1 0.95  0.975 g !
\ e T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T S T,
Y ) 1,7 1.025 ' 0.975 Q95 .. 1 1.05 g !
T T T S S T T T T T T T e S T S S T T S T g e e e T T S T T T T S T T T T T T T T
\ ; L0873 L 1 095 1.025 1.05 5000
________ S B, N 0 C ol  C —
" States — Bus Voltage (Eplsode 8 and 5000)
_bust  bus2 _ bus3 _ bus4 y busS | ,bus6 _ busy’ _bus8 ! 113115_9 . _bus10  buslt  busl2 _busi3  busl4__ episode
1 1.06 1.045 1.01 1.01797 1. DZdZS 1.07 ,1’06204 1. QQ 1. 95682 1.05137 1. 05?56 1.05568 1.05237 1.03698 8 _:
| 1.05 1.025 1 0.97375 DQ?EE [195/ 0.974 0975, 0096352 0.95255 0.941502 0.93591 0.9342 0.93076 g |
_________________________________ 20 02y 0973 030, 030352 095255 034302 033991 09332 93307/6 8 .
: 1.025 0.975 0.95 0.95572 [}.95999 /1 1.00554 1.05 10994[}2 0.98678 0.99D11 098523 0.98225 0.96972 8 |
TTUTT106 1045 1.01 1.01699 1.01936 TTTAG7 106047100 .IBEID‘Q’T 04913 1.05583 1.05456 1.05036 1.03339 5000 !
T g T I‘“Yiii‘ﬁiﬁiﬁ‘iﬁiﬁif‘“fﬁi{‘fﬁﬂﬁé““fﬁ§viaﬁiﬁfﬁfiiﬁé‘i?ﬁé&f‘Iﬁﬁﬁ%‘ﬁiiﬁﬁﬁ‘ﬁ@éi&f;;‘ﬂiﬁ‘ﬁ



Discrete vs Continuous Action Space

QL:

Environment  Agent agent and environment
actionk-1{ | statek action k [} state k+1
Max [=»reward k (/ ) Max [ -*reward k+1
| \ | >
Time k Time k+1
DL (DNN): policy and

Q-function updating

__—~ RL: interaction between

DQON: using multiple layers of nonlinear process units
(neural network) for feature extraction and transformation;
Using value function to select action (e.g., e-greedy)

DDPG: using one deep neural network for actor and
another one for critic. The action is directly generated by
actor based on the value from critic.

GEIRINA

GEIRI NORTH AMERICA

Discrete state (Q-Table)
& discrete action
(a=argmaxQ(s|6”))

Continuous state (Q-
Network) & discrete
action a=argmaxQ(s|6”)

Continuous state (Q-
Network) & continuous
action a=u(s|o#)

23
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DDPG Agent for IEEE 14-bus System

60%-120% random load changes are applied to each episode

Either no violations

Learning from scratch Test on 10k new cases

250 250
200 200
ge)

-C-% 150 |- E 150 b
c% oor 2 iteration steps@® " [

m 50 z 50
or 3 iteration steps  °f
-100 =00 . ’ .;U;. —_—— 100 F
e 5 iteration steps [

1 1 . 1 1 1 | 1 1 1 _200 1 1 1 1 1 1 1 1 | J
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Episode Episode

-200

After 6,000 episodes’ learning, the designed DDPG agent starts to master the voltage
control problem by making decisions autonomously.

24
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DQN and DDPG Agents for 200-bus System CEIRTRORTH AMERICR
60%-120% random load changes are applied to each episode

Regional voltage control is » DQN Agent oty

considered for DQN agent: 3

5 adjacent generators with 30 150 ¢ Training »«—— Testing——

interconnected buses in the
neighborhood subsystem

Three iteration steps

Episodes Rewards
(4]
S
T

mm»xx—x—x*x——%x—%«—x————%—x—x———}x——— e X XK o — — — — — —
vl ASAN I x ! ;
L — co=sssoofmoosoooooos
i | More than five
-50 : ! ! ! ' ! I jteration steps
0 2000 4000 6000 8000 10000 12000 14000
DDPG Agent | No violation or one
200 iteration step
|
|
|
150 | — o '
9 Training >ie Testing —
= |
£ 100 - |
% BRSO | X
(5] I
§ 50 - e o — ——— oS~ _______~ Three iteration steps
E_ IR Ko R B RES OB g X }
0 %WWWWWﬁX&%fx% 777777777 (ugupupupugngugug ipngupupupupupupe mfuduie :
XK X H
TR XIS XX X 8 } More than five
-50 : ' ' ' ‘ * I jteration steps
0 2000 4000 6000 8000 10000 12000 14000
Episodes

After 10,000 episodes’ learning, the designed DRL agents start to master the voltage
control problem in the 200-bus system by making decisions autonomously.



Further Testing Results-200 Bus System GEIRINA
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[ ]

Test the DRL agent under different loading conditions: heavily loaded, fully loaded,
and lightly loaded.

Consider different topological changes. For example, random line tripping
contingency or N-1 conditions.

DDPG; 60%-140; Enforcing Q limit Either no violation

DQN; 60%-140%; Enforcing Q limit
e _Or 1 teration step.

2 Iteration steps

3 iteration steps
o o
-1 DD% =100

Reward
3
i

Reward

More than 5
2% 05 1 15 2 25 5 X105 i =% 05 1 15 2 25 3 x10°
Episode iteration steps Episode
Observations:
1. The designed agents work very well under all testing conditions.
2.  The results comply with basic power system principles and engineering judgement very
well.
3.

The proposed framework is promising for power system autonomous operation and control.



Summary of Results: IEEE 14-bus System
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. . .
< Training sie—Testing
(Case 1—40000) iI_(Case 40001-50000)
||
Percentage of Different No. of Voltage Violation in Various Cases
L
1 )
N © Sig-” e 8
o> .- 1 * :? °1 % 9o |
1
1
0% 20% 40% 60% 80% 10094 0% 20% 40% 60% 80% 100%
:
200 : -
H 100 100 100 ll)ﬂ
80 } 80 80 80 IBﬂ
g ] 1
150;" 60 \r 60| &0 60 !60
g 40 | 40 40 40 | B
< 20 } 20| 20| 20 IIU
1] ; (1] o o I 0
- 100 2 No. naf Itar:linns5 L :’ : anoflterarins £ = Nc.zuflteratims 2 = Ne,oflrzaralinns 3 = No. of Iterations E
2 o e —_—— ,,.? 1
& 3 Reward Increasing
50 i H [}
| :
| I
o | : DQN Agent
i 1 With Action
i : No Action
-5 10000 20000 30000 30000 50000
Episode 1 .
: F  — Agent Improving
200 15 é’ |
. 80 i 80 i 80
é J L
150(g 60 60 HC
E 40 : 40| } 40
E 20 i 20 i 20
R e B v e B e s No.o tratons Sa————
s T > |
— | Reward Increasing
: i
| : DDPG Agent
| 1 With Action
i 1 No Action
20000 30000 400(%0 50000

Episode
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Summary of Results: Illinois 200-bus System
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Training : Testing 5

< (Case 1—-10000)

1
: (Case 10001-14000)

Percentage of Different No. of Voltage Violation in Various Cases
L]
1 o
S T | o I D Ao ®
o 2 © A et 1°° i n’x‘o' - 2°” Y 20"
\' I
g
1
1
0% 20% 40% 60% 80% 100% :0% 20% 40% 60% 80% 100%
n
1
1
200
. JH Note that the
e o » 0 o 5 bo
S o o " o 0 ! I DQN Agent
150 E 40| 140 40| a0 1 4o, "a 40|
pl | PSS P SNENEE | PO SN b )| PNEENR S only controls
] "
B 100 ] Reward Increasing 5 adjacent
; -,—I G OO 200 (0D M0 MDD GEOD A D I O OO0 O e c
& H generators
50 1
1
B i
u :
o ; DQN Agent
1 With Action
: | No Action
-5 2000 4000 6000 . 000 100?0 12000 14000
Episode H
ool Agent Improving
!
200 -
100 ioo (1 100 10f]
. . . 0 o
: : : 3
£ 20 20 20| 20| 2'
R 7 B R L An R R K Ll BF RN AR * Wo.oruerations * - pe— o. of terations
- 100 N : 4& i
g e o ! Reward Increasing
o
1
50 :
- ; ! DDPG Agent
- 1
| : With Action
1 No Action
-5 2000 4000 6000 000 1000!0 12000 14000 28

8
Episode
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Outline

 Grid Mind: Autonomous grid dispatch and control based on PMU
measurements

e Demo

29
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Demo of Grid Mind: Autonomous Voltage Control

GrE d Mind

L sinont O About Us

Grid Mind Flowchart

1) Modifying the loa
2) switching off a line

Step 2
Check Voltage Violation
Maintain the bus voltage

within 0.95 — 1.05 Run Power Flow Simulation to see whether any
voltage violation exists

. Normal range of the voltage: 0.95 — 1.05
Illinajs 200 Bus System

Run Grid Mind

Run Grid Mind to Eliminate the voltage
v violation by controlling the voltage on the
e e e e e et e e >
generator buses

& Systam Amaytics Groop ar GEIRINA-

30
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Step 1. Perturb the System

GrEd Mind ...

L sisnout € About Us

System Information Grid Real State
Minois 200 bus system includes: 200 buses, 38 225 lines, 160 loads, iom capacity: 3160 MW and 1240 MVAxr
Grid Components
Load Centrol - Trip Line
] Normal Bus & Line
Current Load Percentage: Total Load: N'IME: . I Ganerstor L}
Select a Line o trip: \
140.00% 1508.55 MW Load Values - e —
Rl ot iy vy
SLF6T25 Il 2030 -
Random Load Adjustment LPITY e
Random Scale Load (0.6-1.8): Random Std of load (0-0.1) * o
—— - SLFI4ITS6 o
Set Random Load Ho
SLFNT17 20-100 .

. . oy . —
Single Load Adjustment : Y .
Pick One Load No: Scale this Load (0.6-1.4) SLF19T17

——a
Youtripped : LETT101 & . _— % . /
s ige Lo : |

“Trip This Line . ) b
L ]
Load State b J ."_, »
i . J—
i = . / -
I . — e p— T ¥ o \
d c H / M_L"X o
1 s o CEESE— . —
- b h'*' e (%
| | "n J ‘n _." N .' ' —.
, = L a7 - H ~ '
[ || B e |‘1I .‘.".||||||| ﬂi |.“‘.’i| -*'||I|| ?Il ?||.f."l'|'. |I|||I“" mflhh |H| ||I|'| . s

©2019 Copyright: AL & System Amaytics Group at GEIRINA
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Step 2: Check for Woltage Violations

GrEdMind ... Lsmon @ ours

Current Grid State Grid Real State
Voltage Upper Limit: 1.05 Voltage Lower Limit- 0.95
Bus Voltage outside Bound Count-
Grid Mind is ready to run, please go to step 3: Run Grid Mind ! Gnid Components
Norml Bus & Line
== : o~
L ] /
Load Values |
1067 M 20
</ 20-30
108 3040
40-50
1] 50-60
60-80
80-100
103 100+
L0 =
1.01
1.00
099 |
098
087
056
095
054
BuslD
20 40 L] %0 100 120 140 160 180 200 /
Y Voitage Magnitude Vahues( p.u)
T

09 10 11

<==Go to Step 1: Re-perturb Grid System
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Step 3: Grid Mind Suggests Actions and Performance

Gr& d Mind

Home _

L signOut @ About Us

Curreat Grid State Grid Real State
Gnd llows Skow oxly Vol
GEN @Bus 49: 0970 — 0972 (p) GEN @Bus 50: 0970 —> 0997 (p)
GEN@Bus 51: 0970 > 0985 (pu) GEN @Bus 52: 0970 > 1032 (pu) Grid Components

GEN.@Bus 53: 0970 > 1003 (pw)
GEN.@Bus 67: 0,980 > 0.998 (pu)
GEN.@Bus 69: 0.980 > 1001 (pu)
GEN.@Bus 71: 0.980 > 0990 (pu)
GEN.@Bus 73: 0980 > 0992 (pu)
GEN.@Bus 77- 1040 > 0997 (pu)

GEN.@Bus 65: 0980 > 0984 (pn)
GEN @Bus 68: 0.980 > 1012 (p)
GEN.@Bus 70: 0.980 > 1013 (pu)
GEN.@Bus 72: 0980 > 1012 (pu)
GEN.@Bus 76: 0.980 > 1009 (pn)
GEN.@Bu= %0: 0970 > 1017 (p)

[E==Y)

8
Volisge (pn)

101

1.00

0.8

097

056

e

054 y

Go to Step 1: Re-perturb Grid System

Normal Bus & Line
Generator = = SRS
i\ / \

Load Values R

I 020 \ /
Il 2030 \ X : e -~

3040 \ 8 S
40-50 \ \l Y ey o
50-60 3

60-80 | =

80-100 2 ~
100+
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Outline

 Background and motivation

 Grid Mind: Autonomous grid dispatch and control based on PMU
measurements

» Deep Reinforcement Learning
« Autonomous voltage control

* Demo
« How to architect/tune an effective self-learning agent?

* Discussion/Other applications
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» Considerations

There are tons of parameters, settings, and different formulations that need to be
designed and specified. And subtle difference in them may generate very
different results.

» Testing Roadmap

1. Consider different sizes of action space
2. Consider different neural network structures
*  Number of neural networks
»  Number of layers
*  Number of neurons
3. Consider different regularization methods
« Batch normalization
» Layer dropout
4. Consider different DRL formulations
»  Deep-Q-Network (DQN)
»  Deep-Deterministic-Policy-Gradient (DDPG)
5. Consider dynamic adjustment process
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Lessons Learned, After Hundreds of Thousands of Numerical Experiments ~ GE/RI NORTH AMERICA

Summary of Tuning Results
DQON Agent

Measures Conclusion
Change action space from 5*  Performance deteriorates when
to 5° action space size grows
Single-DQN and double- A double-DQN has a better
DQON are tested performance over a signle-DQN
Test with 2/3 layers with Subtle performance degradation is
20/40 neurons observed when increasing lay. or
neu.
Using batch normalization Applying regularization methods
and layer dropout significantly improves performance
DDPG Agent
Measures Conclusion
Using batch normalization Applying regularization methods
and layer dropout significantly improves performance
Dynamically increase or The agent is able to solve the

decrease the voltage setting voltage problem using minimum
point for a small step in each  iterations after well trained.

iteration
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» The proposed DRL framework demonstrates very promising results for power
system autonomous dispatch and control, using measurements from advanced
sensors, PMU as an example.

> When reactive resources are sufficient and/or distributed unevenly, Grid Mind can
find very fast and effective solutions for fixing voltage issues.

> Research team will train and enhance Al agents to find optimal solutions for
scenarios with limited reactive resources.

» Thorough testing has been carried out to study the influence of various factors,
which sheds light on the design of an effective agent/robot.

> Therefore, we have duplicated an example of Alpha Zero, Grid Mind, for
power systems.

> With extensive offline calculation and online learning, in the mid-term, Grid
Mind serves as an assistant to grid operators; in the long term, Grid Mind will
be the core of power system operation ROBOT.

» With proper modifications, the proposed framework can be applied to many
other applications.
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Thank you!

di.shi@geirina.net

WWW.geirina.net/research/2
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