CURENT

CENTER FOR ULTRA-WIDE-AREA RESILIENT
ELECTRIC ENERGY TRANSMISSION NETWORKS

Adaptive Wide-Area Damping Controller Using Transfer
Function Model Derived from Measurements: Case Studies
on Realistic Power Grid Models

Presented by Lin Zhu

NASPI WG Meeting
San Diego, CA
April 15-17, 2019

Team:

Yilu Liu®2, Lin Zhul, Yi(Joy) Zhao!, Huangging(Hans) Xiaol, Ibrahim Altarjamil, Evangelos Farantatos®, Mahendra Patel3,
Atena Darvishi4, George Stefopoulos?*, Giorgio Giannuzzi®, Roberto Zaottini®, Ahmed Al-Mubarak®, Muhammad Ali®

1. The University of Tennessee, Knoxville; 2. Oak Ridge National Laboratory; 3. Electric Power Research Institute; 4. New
York Power Authority; 5. Terna, Italy; 6. Saudi Electricity Company.

THE UNIVERSITY OF L~ ‘ Sy akaFi AR B
TENRESSEE EPr . G Ny ' &4 lerna s




Outline

* Motivation
« WADC Design Using Measurement-Driven Approach

e Case Studies on Realistic Grid Models
- New York State Grid Model
- Terna (TSO in ltaly) Grid Model
- SEC (Saudi) Grid Model

e Summary
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Motivation

e Decreasing and inadequate damping during cascading events.
o Adaptive wide-area damping control is desirable.
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Planning Model Based v.s. Meas.-Driven Approach

 Measurement-driven approach

Q Build a simple, low order transfer function model to depict
system oscillatory behavior for damping controller design

_ System Planning Model Measurement-driven Model

Model size Large (~7_0,000 bus for El) Simple
High order Low order

Model accuracy Low (if not well validated) ~ '9h (for damping controller

design)

Modelnps ateiraie Every year (typically) Every 5 minutes

Track operating

condition variation Not easy Easy

Adaptive damping control Not easy Easy
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Adaptive Wide-Area Damping Controller Design
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Adaptive Wide-area Damping Controller
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Measurement-driven Model Identification and Validation

 Model Identification: Using ring-down or probing measurements.
* Model validation: Check fithess index; Compare damping ratios,

osclillation frequencies, residue magnitude, and residue angle.

Simulate: d Response Comparison

Amplitude

Fithess = 84.98%

Time (seconds)

EcurRENT

lllll “ ’l-—(l—;'];‘;'kkllil- SSEE

Model Identification Results

Order Fitness Oscillation Damping Residue Residue
Index(%) | frequency(Hz) ratio(%) Mag. angle (deg.)

© o0 ~N o o b~

77.33
84.98
76.25
85.36
75.76

EEEEEEEEEEEEE
EEEEEEEEEEEEEEEEE

0.2652
0.2781
0.2566
0.2765
0.2956
0.2801

# NewYorkPower

<& Authority

16.09
19.62
23.70
17.52
8.88
18.84

\

”

-
YA
ierna

0.0009
0.0013
0.0014
0.0011
0.0007
0.0013

\ Saudi Electricity Company

117.87
139.15
101.95
136.63
159.70
142.52



NYPA Case Study (1/3)

e 2019 NYISO planning models
(Spring, Summer and Winter)

 Modal analysis: Identified coherent

groups and dominant modes

 Feedback signal/Actuator: Bus
frequency/STATCOM in Area E.

 Demonstrating adaptive
performance of WADC

0 Cascading events
O Seasonal operating condition
variations
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NYPA Case Study (2/3)

e Cascading events
Q Create operating conditions via multi-line trip dlsturbances

Q Using ring-down data to build the model .~
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NYPA Case Study (3/3)

- Seasonal operating condition variations
o Adaptive WADC: WADC tuned based on each case separately
 Non-adaptive WADC: WADC tuned based on winter case

Damping Ratio Damping Ratio
WADC Improvement of Mode #1 | Improvement of Mode #2

_ Non-Adaptive +7.85% +4.47%

Winter _
Adaptive +7.85% +4.47%
Non-adaptive +5.38% +6.82%

Summer _
Adaptive +7.00% +7.23%
_ Non-adaptive +5.65 % +1.63%

Spring _
Adaptive +7.33% +6.25%

@DURENT P TENNESSEE PRI | M it o lowukPower  ZATArNg O mmmme o



Terna Case Study (1/3)

hester Ha r'réhurg

 Model provided by Terna B

 Modal analysis: Italy-France
mode In Terna model

* Observation signal selection:
a0 PMU1L South Italy

aQ PMU2 North Italy (France
area Is optimal)

e Actuators: Two synchronous
condensers in South Italy

““Mode #1
_ 7.03%@0.281Hz

Val

e ‘ Macedoni
@ 11.75%@0.4 104z
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Terna Case Study (2/3)

Realistic oscillation event in Dec. 2017
0 PMU measurements provided by Terna
O Two consecutive generator trip events
a Growing oscillation: ~0.292Hz
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Terna Case Study (3/3)

Two WADCs are designed using ring-down measurements
The growing oscillations can be damped by WADCs
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=—no controller
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no controller
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SEC Case Study (1/2)

e Target mode: est/south v.s. central/east
s+ * Observation signal:

i 0 Bus frequency between west and central
e Actuators:
o SVCs

O Generator governors in west/south
O Generator exciters in west/south

e Improve damping ratio and transient
stability simultaneously

0 Three incidents since 2015 that resulted in
tripping tie-line between west and central —
system separation

hhhhhhh
Ball

.-" gle My Maps
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SEC Case Study (2/2)

* Improve damping ratio and transient stability simultaneously
O Temporary fault on tieline between West and Central
O Large generation trip in west: ~2 GW

noWADC withWADC
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Summary

A measurement-driven approach to design WADC, does not rely
on full system dynamic model.

- Model Identification using ring-down or probing measurements.
- Model validation in time-domain and frequency domain

« Adaptive WADC to accommodate variations in operating
conditions, providing better control effect.

« Validated in three realistic large power grid models: NYPA, Terna
and SEC.

 Next steps
- RTDS/OPAL-RT hardware-in-the-loop test
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Backup: Case Study on Two-area Four-machine System

ECURENT

Frequency difference (p.u.)
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Backup: Adaptive Wide-Area Damping Controller

Structure

* Lead-lag structure is employed
 AdjustT,, T, , K, and w based on the identified

model

Filter Gain

Selected feedback

signals Packet Delay & w/Q’s ] K
Loss Compensator S2+0/Q* s +W2 J 2

) Added to

Tws Tis +1 Tis +1 |
Tws+1 Tos +1 Tzs +1 |

> \/ref Or Pref

S/

Washout Lead-lag Lead- Iag with limit  Deadband

WADC Based on Lead-lag Structure
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