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Pacific

Northwest N L project for PMU data analysis

» Project is supported by the DOE through the GMLC
program

» Develop a framework for PMU big data analysis
B Event detection
B Anomaly detection
B Improved situational awareness
B System identification (learning system dynamic behavior)
B Advanced visualization

» Framework is based on the cloud technology and
distributed computing:
B PNNL institutional cloud system or Microsoft Azure

B Apache SPARK for distributed big data analysis and Machine
Learning (ML)

» PNNL
M Jason Hou
B Huiying Ren
B Heng Wang
M Troy Zuroske
B Dimitri Zarzhitsky
M Eric Andersen (PM)
M Pavel Etingov

» Partners
B LANL
M LBNL
M BPA
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Northwest  PNNL Cloud Infrastructure
= O openstack = wipuu -
* PNNL cloud is based on OpenStack S etwork Topology
(a free and open-source software n . T
platform for cloud computing) openstack
 Cloudera Apache Hadoop cloudera
D|St|’|but|0n: Ask Bigger Questions @ @ @ @ @
= Apache Spark (an open-source S <£Z & ©
cluster computing framework) PArK. g’ o
e &7
= Apache Hive (a data warehouse % @) o
iInfrastructure built on top of Hadoop A% oo
for providing data summarization, ~HIVE

guery, and analysis)

Spark research cluster
= HBase (an open-source, non- L ) e 20 nodes

relational, distributed database) AEASE « RAM 512 Gb
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o Large scale parallel data processing framework SpQrK ”

« Extremely powerful (up to 100x faster than Hadoop)
e Large datasets distributed across multiple nodes within a computer cluster
e Support real time data stream

 Built-in Machine Learning library

e Support different languages (Scala, Java, Python, R)

o Support different data sources (SQL, Hive, HBase, Cassandra, Oracle,
etc.)

* Open source and free

 Available through public cloud services (Amazon AWS, Microsoft Azure,
IBM, etc.) and through new PNNL institutional cloud system.

April 25, 2019
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SPARK cluster

|spaikd] Wi

i Node 1 | 11|

SNNLEIOC | sparc G\& | SPARK
ST | Tt 1Y Shwe| [~ (head e W
Historical joce)

data : 1

.CSV, .xml I
T AR R —

REST APl 3 I
1

EIOC - Electricity Infrastructure Operations Center
HDFS- Hadoop Distributed File System WEB based GUI
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PMU data stream

e PNNL receives PMU data stream
from Bonneville Power Administration
= 12 PMUSs

= Multiple channels (Voltage and Current
Phasors, Frequency, ROCOF)

e PMU Data stored in PDAT format
= PDAT format developed by BPA
= Based on |IEEE Std. C37.118.2-2011
= Binary files
= Each file contains 1 minute of data
One file ~ 5 MB

Data frame organization defined by IEEE C37.118.2

No. Field Size (bytes) Comment

1 [ SYNC 2 Sync byte followed by frame type and version number.

2 | FRAMESIZE 2 Number of bytes in frame, defined in 6.2

3 IDCODE 2 Stream source ID number, 16-bit mteger, defined in 6.2

4 S0C 4 SOC time stamp. defined in 6.2, for all measurements in frame.

5 | FRACSEC 4 Fraction of Second and Time Quality, defined in 6.2, for all
measurements in frame.

6 |STAT 2 Bit-mapped flags.

7 | PHASOES 4 = PHNME. | Phasor estimates. May be single phase or 3-phase positive, negative, or

or zero sequence. Four or § bytes each depending on the fived 16-bit or
8 = PHNMR. | floating-point format used, as indicated by the FORMAT field in the

configuration frame The number of values is determined by the PHNME.
field in configuration 1, 2. and 3 frames.

8 |FREQ 274 Frequency (fixed or floating point).

9 | DFREQ 274 ROCOF (fixed or floating point).

10 | ANALOG 2 = ANNME. | Analog data, 2 or 4 bytes per value depending on fixed or floating-point

or format used, as indicated by the FORMAT field in configuration 1, 2, and
4 = ANNME. |3 frames. The number of values 15 determuned by the ANNMRE field in

configuration 1, 2, and 3 frames.

11 | DIGITAL 2 = DGNME. | Digital data. usually representing 16 digital status points (channels). The
mmber of values is determined by the DGNME. field in configuration 1,
2. and 3 frames.

Repeat 611 Fields 6-11 are repeated for as many PMUs as in NUM_PMI field in
configuration frame.
12+ |CHK 2 CRC-CCTIT
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dPython (PySpark) modules:
»PDAT data extraction

»Data processing
» Bad data
= Missing points
= Qutliers
»Event detection and classification
" Freguency events
= \oltage events
»Feature extraction and analysis
= \Wavelet decomposition
= State space models

* Principal component analysis
= Recurrent neural network
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e Read information from PDAT and
creates SPARK data frames

« Store information in Hive or Parquet
tables

* Implemented in PySpark that allows

parallel processing of multiple PDAT
files

 Significantly increased performance

= To read information for 1 hour takes about
20 seconds (20 nodes cluster)

_____________________

PMU data
stream

_____________________

R

Spark
Parquet

Spoﬁ“.{

~SHIVE| i

Data
frames

Bl




12 pmu voltage

Pacific ( S
Northwest -~

230 ORAT00  0RIT 05:08:00 ! 3:1 O3AT00 033730 OF3E:00 ‘!5’]&3‘:‘ IO U3:ATIMD DRRE:DD 'J'.-JEQ- [0 rh B - B rEb ]
NATIONAL LABORATORY g

7.1k
JF
™
T
65
7.7
6. sk
b H 6.7k

||
103 2“
RT3 e K ol L oo L) (S VN IR -, -
Brf36i30  DEATG0 DEATM 053800 O35 3b  BEAT:DD  OR:NM30 O3B B: !r‘ B EeIP:DE - ORcITBE DEC3E:0D IJi!I B O5:3Tob  O5c3MD O5:EEDD
Sep 14, LG Sep 14, TG Sap 14, H01% Sap B4, 2018

. | g — g [V MA, - i
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e Cross validation helps determine the
optimal thresholds to reduce/avoid

false alarms . K/HJ \// \//
» Spark usage significantly increases the "

computational throughput of the

application i\// V_, | \/,/
 Processing of 1 day data takes about . ",

5-7 minutes (processing the same

dataset using a PC takes about 1 hour) : V, \/_/, /,./
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« Offline events detection: adopt wavelet decomposition to examine the PMU
signals with multi-resolution analysis (MRA). The events can be detected at
multiple temporal scales. Pros: yields high detection rate at multiple
resolutions; Cons: requires long time period of data

* Online events detection: learn the historical patterns of PMU signals and then
predict for the future

= Dynamic Linear Model (DLM): one of state-space models. Pros: fast forecasting with
relatively short input time series; Cons: forecasts focus only on the near-term
behaviors.

= Long short-term memory (LSTM): one of deep learning Recurrent Neural Networks

(RNN). Pros: forecasts have high accuracy for relatively long time windows;
Cons: needs long time period for training and may be computationally expensive

10
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Wavelet-based
multi-resolution

analysis
(MRA)

Signals are
transformed into
time-frequency
domain

MRA decomposes
signals into
approximation (A)
and detail (D)
components

Wavelet-based MRA Event Detection Framework

(1 sec)

I

Dy

(2 sec)

&

Az D,

EI (4 sec)

(8 sec)

MRA decomposition Tree

5-min bandwidth
of moving
window

matrices are the
summation of
scores at multi-
resolution levels
across all PMUs

Final list of

detected
anomalies

Wavelet Moving window Spatiotemporal
coefficients f===Pr based anomaly t=#| Anomaly scoring =¥ corrclation ==
extraction candidates analysis
Extract the Identify anomaly Anomalous score False alarms or
detail wavelet candidates at is set to be 1 when localized events
coefficients at multiresolution an anomaly is corresponds to
scales matching levels with detected at each relatively weak
the durations of moving-window- resolution level. spatiotemporal
events based anomaly correlations
detection The anomaly score

11
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Northwest
 The anomaly score matrices 55
were calculated across 12 PMUs  £g 5
at multi-resolution levels for each “ 61100 61200 61300 61400 - o ©
. Time(sec) o | Po REBEIIN \o 0 09 o
PMU attribute. 53] Yoes” VPV | foo? o\
 Red vertical lines correspond to Eug{‘*‘“"“"“‘"""”“"'*‘"/% :
a historical recorded event at <@L . l , swieo a0 _aseo \  deTe0  4seoo
. : 61100 61200 61300 61400 me(seo)
multi-resolution levels Time(sec)

More than 3 sequential points exceeded

P the threshold and counted as an event.
O] +1 added to the anomaly score matrices.
8 o
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Time(sec)

S
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Examples of MRA Detected Anomalies

An example of detected system-wide
anomaly (frequency signals) where the
PMUSs have consistent behaviors and

An example of detected local anomaly
(voltage signals)

strong cross-correlations.
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Unit1 Frequenc

59.98 60.00

58.96

yields accurate forecasts in short time windows

60,02
L

Ilh — -y
g | |O utput
g " |
window
- ,
T |
L=
I g |
= © il
: [
[T
DLM : 5 |
2 3 | I
e |+ Original observations
%' -1-%— QOne-step-ahead-forecast observations I

—&— g-steps-ahead-forecast observations
X Historical recorded event
% |dentified event by the framewo rk

T T
61270

61240 61250

Time

Pure data-driven
dynamic linear model
training using
Kalman Filter

| |
61240 61230 61260 61270 61280 61290

61280 61290

Time

Predict ‘normal’ system behaviors by
learning historical patterns.

The cumulative probability distribution
(CDF) of prediction errors:

F(x)=P(X<x)=

Ve = Fi0y + Uy, 0y ~N(O, V)
Ht — Gtet_l ~+ Wt, Wt ~ N(O, Wt)

0: —>9t+1—>"' —>9t+k

| |
(Yla"':n) Y:t-l—k

f(®)

t<x

The exceedance probability of a
prediction error is then computed as:

P;(X <x) =max(P;(X <x),1—P;(X <x))
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e Threshold for

exceedance

vrobability: the N|ARBAALRE e AR e AARARALARS AR AL
orediction error IS \ | \/ \/\/
peyond X times of the _
corresponding ~" S B
standard deviation o /
e Threshold for o X X

—e— T hresholds (3.5c, 5-points)

points need to pass —&— Thresholds (3.5c, 6-points)
—»— Thresholds (4.5c, 5-points)

the screening in order e

duration: sequential

# of units with observed anomalies

i

to confirm an event. 1'3 5 7 9 11 14 17 '20 '23

Indices of historical recorded events




Freq(Hz)
59.96 59.98 60.00 60.02 60.04

o

LSTM extracts both short- and long-term patterns and

Training dajg

extends predictability

Input = Hidden Hidden . Defse
layer = layer 1 ldyer 2 < layer

Stack layer 1

Stack layer 2

1Testing dataset for
130-steps ahead

Freq(Hz)
59.96 59.98 60.00 60.02 60.04

|~ obs
—&— LSTM Pred

600 800

Stack layer 3

16
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—&— Training

i \ —&— Training
—~— Validation

—&— Validation

, » Training data:

70% I |
> Validation data: M
15% - o !

Loss (MSE)
0.00 0.01 0.02 0.03 0.04
|

Loss (MSE)
0.00 0.01 0.02 0.03 0.04
|

» Testing data: 15%

» Loss function:
Mean squared
error (MSE)

Input180, Pred15, units128, batch60, dropout0.3,learning1  Input120, Pred30, units64, batch30, dropout0.8,learning1e-0:

» Model . o Vaidaton| o "o Vaidaton
parameters: g S° g o | e
Input/output = s 8. R
window, units, & o | TTeTo-e-o-Toan5-o-0| 8 . |
batch size, ° °
drOPOUt rate S I I I I I I I I S I I I I I I I I

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
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dIn additional to anomaly detection and classification practices, more
data analytics can be used to understand the spatiotemporal
behaviors of the PMU signals and the mechanisms

»Block Principal Component Analysis of PMU attributes
»Auto- and cross-correlation Analysis of PMU attributes
» Taylor Diagram across hours, days, seasons

» Spectra analysis and anomaly matching of ‘collocated’ PMU and weather
attributes
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e Video demonstration
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Block Auto-correlation and Principal Component
Analysis to Monitor Temporal Patterns in PMU attributes

AaroLoirel. of PRLUL
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Taylor Diagrams for Evaluating Temporal Similarities

dTaylor Diagrams help identify similarities (in both absolute magnitudes and
patterns) across hours, days, and seasons

=10 4

— 110116
— 110216
110316
110416
110316
110616

1200
Time

20:00

Correlation

24 30
Standard deviation

20
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A Cross-correlation among 12 PMUs Oct 22nd, 2016
In frequency data

 The statistical clusters are found to be
geographically clustered

d The anomalies within a cluster can be attributed
to similar weather factor(s) or climate types

- 10000

0.9999
0.9998
0.9997
0.9996
0.9995 ‘




_‘I %7/ Extreme Weather Drives PMU Events

e The red vertical lines are the historical
m recorded events

55
1

50
1

ﬂ  The black lines are the weather attributes
(e.g., dew point, wind speed, precipitation)

Avg 1min ew pt temp
40 45
| 1

35
!

* Spectra analysis and anomaly matching of
S0t Sep0t  Sep07  Sepl0  Sepld  Sepls  Sepls  Sep22  Septs  Serzs ‘collocated’ PMU and weather attributes
g =] 2 o- -»
% 2 A lgi © - [ 9
" 2 : § ; o |8 EE @
° T T T T T T T T T T T T T T T T I. 1 T T T T T T ll T T T T T o ;“ ﬂl; “uﬂ:j i ;IJ%I;:DﬁEﬁu qu FB% “U:nju E,Eu = ;ﬂ gi;wﬁfﬁ; STF:E%% ° gﬂ%i r EH%

r— 1 1 1 1 1 1 1 17 17 T T T T 1 1. 17 1T T . T T T T T T T T T T 1
Sep01 Sep04 Sep07 Sep10 Sep13 Sep16 Sep19 Sep22 Sep25 Sep28

Sep01 Sep04 Sep07 Sep10 Sep13 Sep16 Sep19 Sep22 Sep25 Sep28




Pacific

Northwest (Conclusions and Future Plans

AAAAAAAAAAAAAAAAAA

« Spark cluster for ML and PMU (big data) analysis was deployed. It is based on
the PNNL institution cloud system.

« PMU data have been collected and archived in PDAT format (PMU data
stream from PBA to PNNL EIOC).

« Methodologies for both online and offline anomaly detection have been
developed.

« Python (PySpark) modules are under development, with the following
functions:
= PDAT data extraction and preparation;

= Event detection and classification with multiple resolution analysis, state space models,
and deep recurrent neural networks;

= Evaluation of spatial and temporal behaviors and identification of the potential driver.
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Pavel.Etingov@pnnl.gov
Zhangshuan.Hou@pnnl.gov
Huiying.Ren@pnnl.gov
Heng.Wang@pnnl.gov
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