

Synchrophasor Analytics using Cloud Based Machine Learning Platform

April 16, 2019

Pavel Etingov, Jason Hou, Huiying Ren, Heng Wang

NASPI Work Group Meeting

PNNL is operated by Battelle for the U.S. Department of Energy

ML project for PMU data analysis

- Project is supported by the DOE through the GMLC program
- Develop a framework for PMU big data analysis
 - Event detection
 - Anomaly detection
 - Improved situational awareness
 - System identification (learning system dynamic behavior)
 - Advanced visualization
- Framework is based on the cloud technology and distributed computing:
 - PNNL institutional cloud system or Microsoft Azure
 - Apache SPARK for distributed big data analysis and Machine Learning (ML)

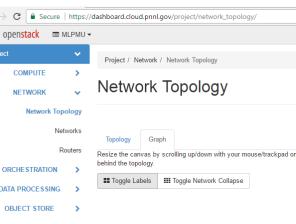
- PNNL
 - Jason Hou

 - Partners **LANL**
 - **LBNL**
 - BPA

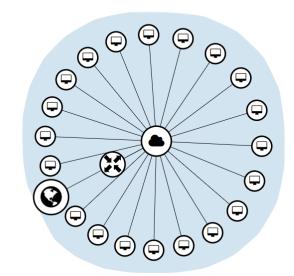
Huiying Ren Heng Wang Troy Zuroske Dimitri Zarzhitsky Eric Andersen (PM) Pavel Etingov

PNNL Cloud Infrastructure

- PNNL cloud is based on OpenStack (a free and open-source software platform for cloud computing)
- Cloudera Apache Hadoop **Distribution**:
 - Apache Spark (an open-source) cluster computing framework)
 - Apache Hive (a data warehouse) infrastructure built on top of Hadoop for providing data summarization, query, and analysis)
 - HBase (an open-source, nonrelational, distributed database)



Spark research cluster 20 nodes RAM 512 Gb

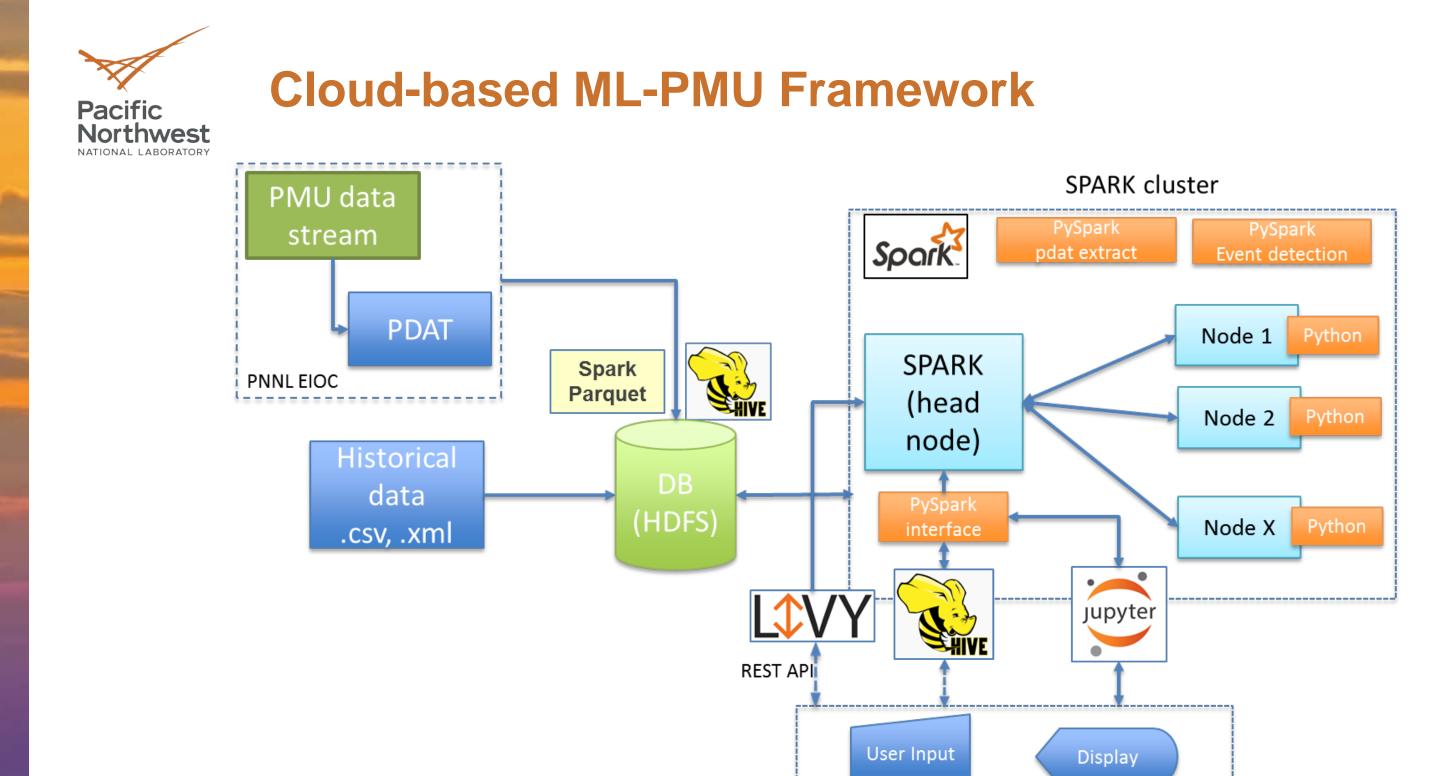


☆ (Launch Instance + Create Network

Apache Spark

- Large scale parallel data processing framework
- Extremely powerful (up to 100x faster than Hadoop)
- Large datasets distributed across multiple nodes within a computer cluster
- Support real time data stream
- Built-in Machine Learning library
- Support different languages (Scala, Java, Python, R)
- Support different data sources (SQL, Hive, HBase, Cassandra, Oracle, etc.)
- Open source and free
- Available through public cloud services (Amazon AWS, Microsoft Azure, IBM, etc.) and through new PNNL institutional cloud system.

April 25, 2019



EIOC - Electricity Infrastructure Operations Center HDFS- Hadoop Distributed File System

WEB based GUI

PMU data stream

- PNNL receives PMU data stream from Bonneville Power Administration
 - 12 PMUs
 - Multiple channels (Voltage and Current) Phasors, Frequency, ROCOF)
- PMU Data stored in PDAT format
 - PDAT format developed by BPA
 - Based on IEEE Std. C37.118.2-2011
 - Binary files
 - Each file contains 1 minute of data
 - One file ~ 5 MB

Data frame organization defined by IEEE C37.118.2

No.	Field	Size (bytes)	Comment
1	SYNC	2	Sync byte followed by frame type and version number.
2	FRAMESIZE	2	Number of bytes in frame, defined in 6.2.
3	IDCODE	2	Stream source ID number, 16-bit integer, defined in 6.2.
4	SOC	4	SOC time stamp, defined in 6.2, for all measurements in frame.
5	FRACSEC	4	Fraction of Second and Time Quality, defined in 6.2, for all measurements in frame.
6	STAT	2	Bit-mapped flags.
7	PHASORS	4 × PHNMR or 8 × PHNMR	Phasor estimates. May be single phase or 3-phase positive, negative, or zero sequence. Four or 8 bytes each depending on the fixed 16-bit or floating-point format used, as indicated by the FORMAT field in the configuration frame. The number of values is determined by the PHNMR field in configuration 1, 2, and 3 frames.
8	FREQ	2/4	Frequency (fixed or floating point).
9	DFREQ	2/4	ROCOF (fixed or floating point).
10	ANALOG	2 × ANNMR or 4 × ANNMR	Analog data, 2 or 4 bytes per value depending on fixed or floating-point format used, as indicated by the FORMAT field in configuration 1, 2, and 3 frames. The number of values is determined by the ANNMR field in configuration 1, 2, and 3 frames.
11	DIGITAL	2 × DGNMR	Digital data, usually representing 16 digital status points (channels). The number of values is determined by the DGNMR field in configuration 1, 2, and 3 frames.
	Repeat 6–11		Fields 6–11 are repeated for as many PMUs as in NUM_PMU field in configuration frame.
12+	CHK	2	CRC-CCITT

Ongoing work

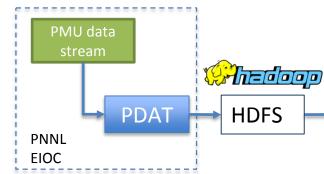
PDAT data extraction

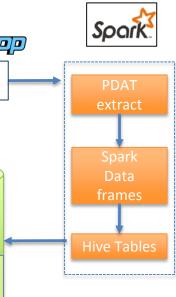
- Data processing
 - Bad data
 - Missing points
 - Outliers
- Event detection and classification
 - Frequency events
 - Voltage events
- Feature extraction and analysis
 - Wavelet decomposition
 - State space models
 - Principal component analysis
 - Recurrent neural network

7

PDAT data extraction

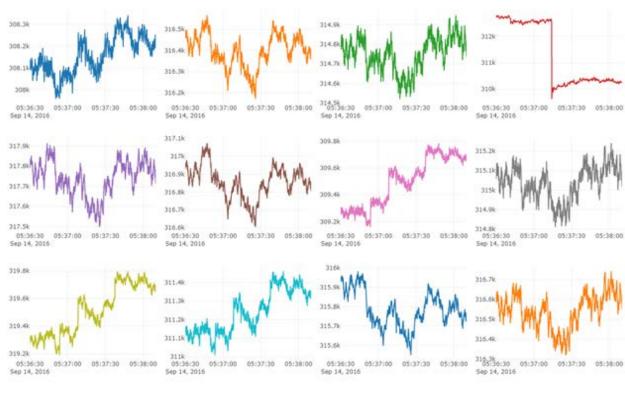
- Read information from PDAT and creates SPARK data frames
- Store information in Hive or Parquet tables
- Implemented in PySpark that allows parallel processing of multiple PDAT files
- Significantly increased performance
 - To read information for 1 hour takes about 20 seconds (20 nodes cluster)

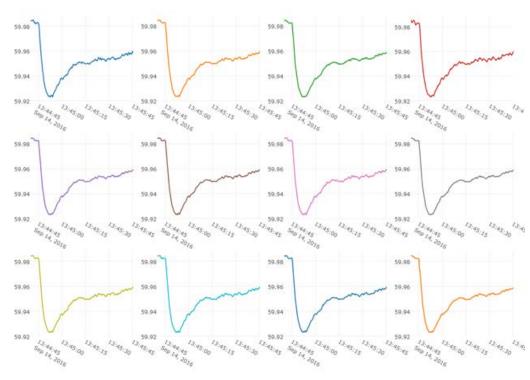




Event Detection

- Validation data consist of user-specified delta frequency and event duration
- Cross validation helps determine the optimal thresholds to reduce/avoid false alarms
- Spark usage significantly increases the computational throughput of the application
- Processing of 1 day data takes about 5-7 minutes (processing the same dataset using a PC takes about 1 hour)

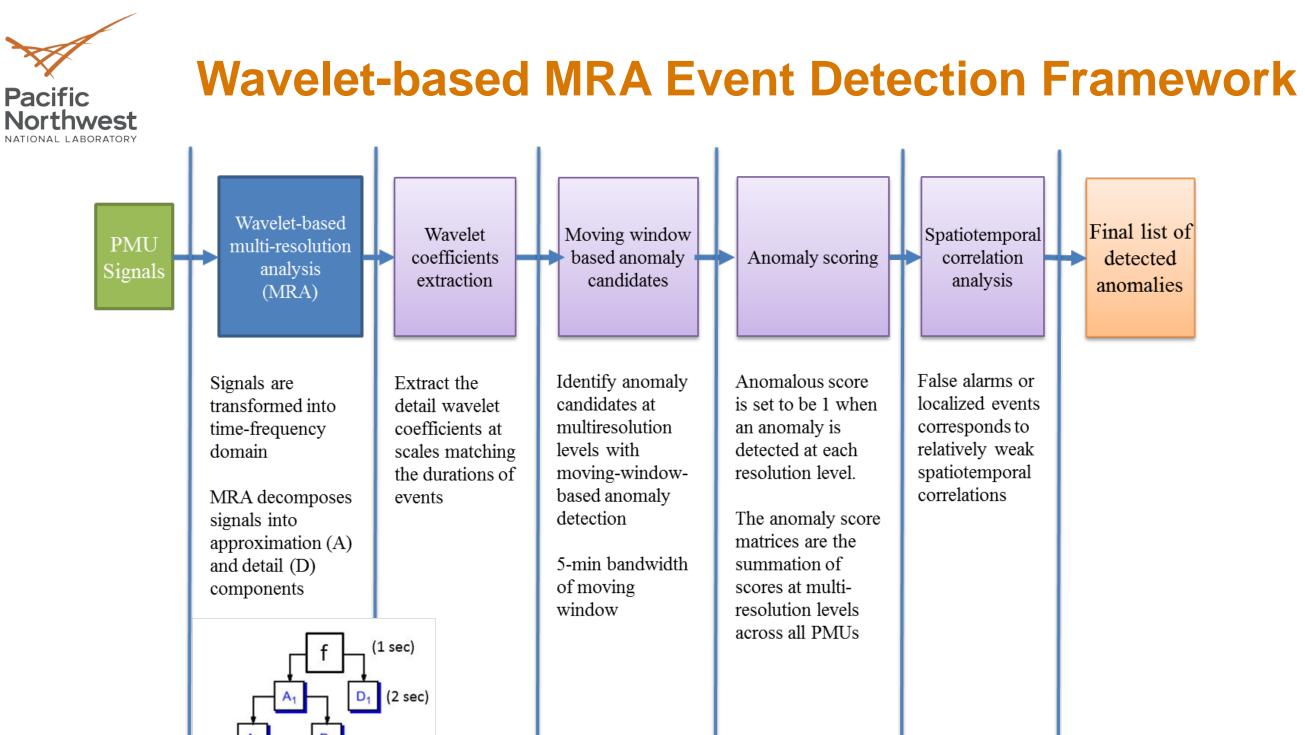




12 pmu frequency

Machine Learning Algorithms for Offline and Pacific **Online PMU Anomaly Detection** Northwest

- Offline events detection: adopt wavelet decomposition to examine the PMU signals with multi-resolution analysis (MRA). The events can be detected at multiple temporal scales. Pros: yields high detection rate at multiple resolutions; Cons: requires long time period of data
- Online events detection: learn the historical patterns of PMU signals and then predict for the future
 - Dynamic Linear Model (DLM): one of state-space models. Pros: fast forecasting with relatively short input time series; Cons: forecasts focus only on the near-term behaviors.
 - Long short-term memory (LSTM): one of deep learning Recurrent Neural Networks (RNN). Pros: forecasts have high accuracy for relatively long time windows; Cons: needs long time period for training and may be computationally expensive



(4 sec)

(8 sec)

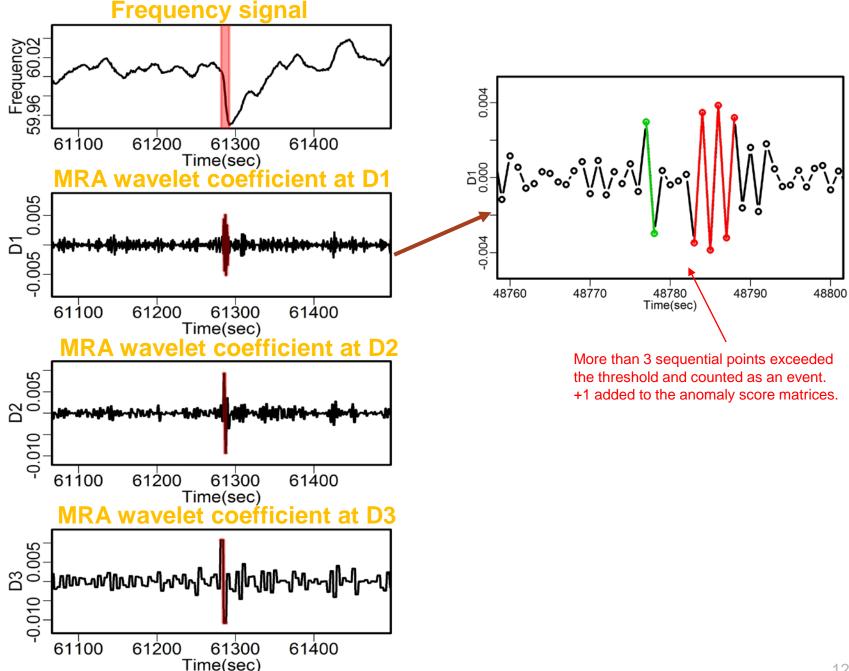
Da

MRA decomposition Tree

Final list of detected anomalies

Assign Anomaly Scores on Decomposed Details

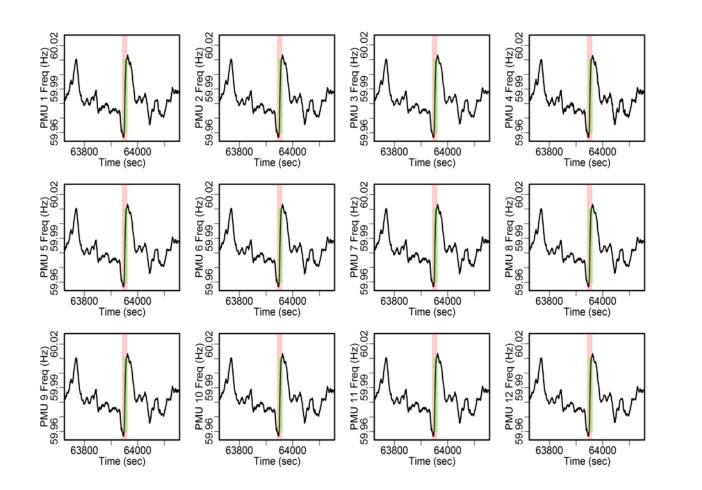
- The anomaly score matrices were calculated across 12 PMUs at multi-resolution levels for each PMU attribute.
- Red vertical lines correspond to a historical recorded event at multi-resolution levels

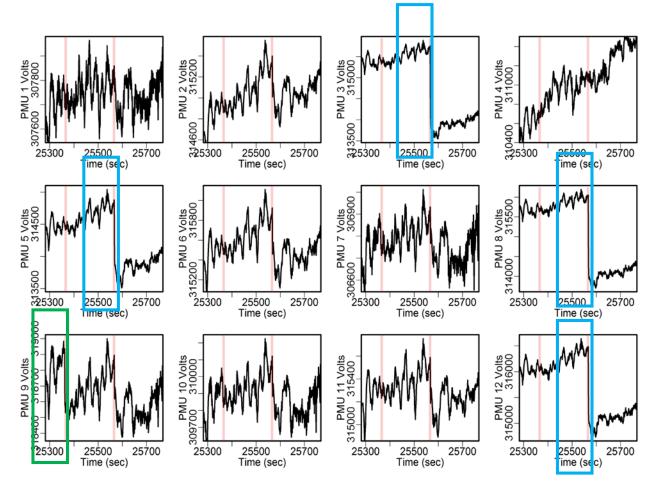


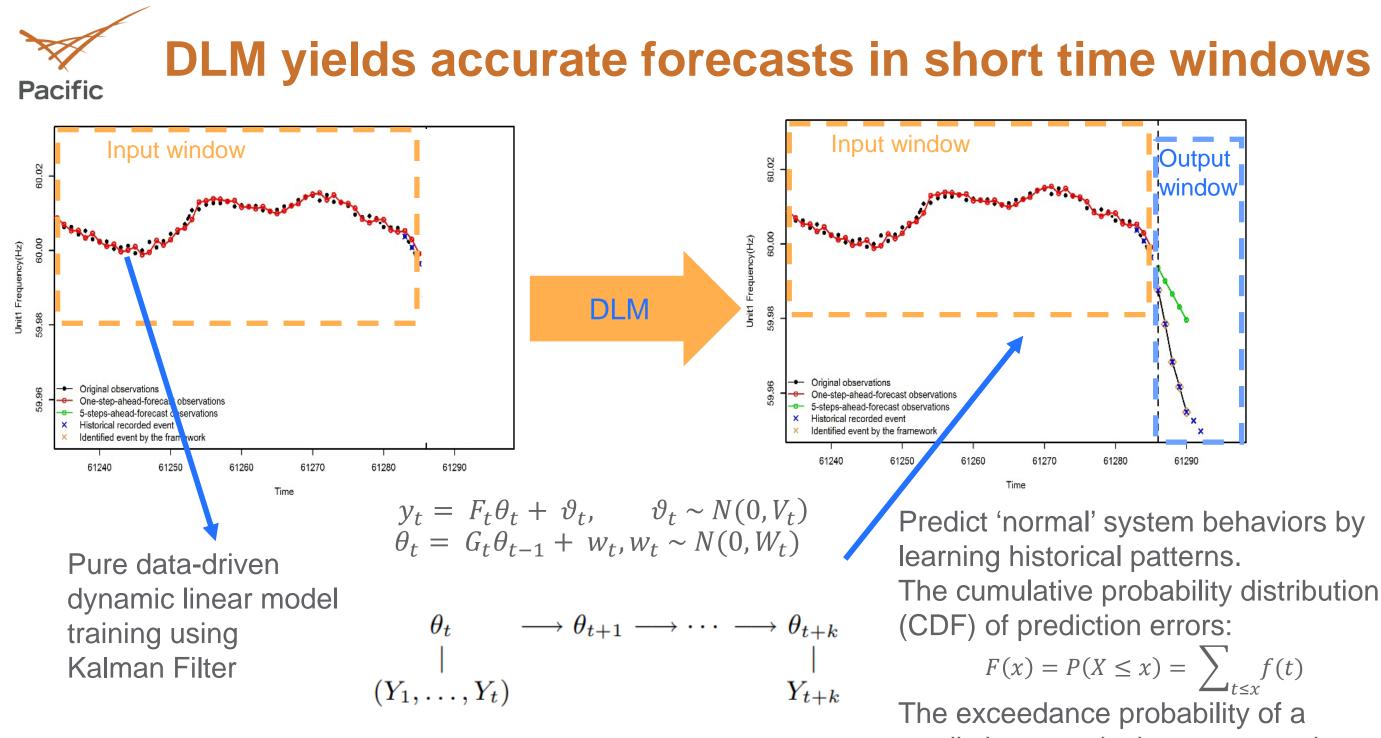
Examples of MRA Detected Anomalies

An example of detected system-wide anomaly (frequency signals) where the PMUs have consistent behaviors and strong cross-correlations.

An example of detected local anomaly (voltage signals)



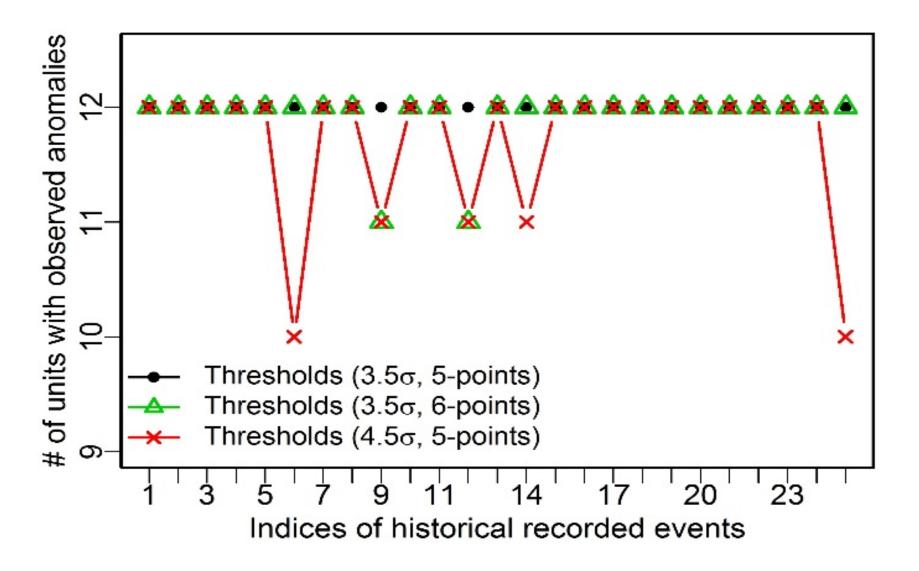


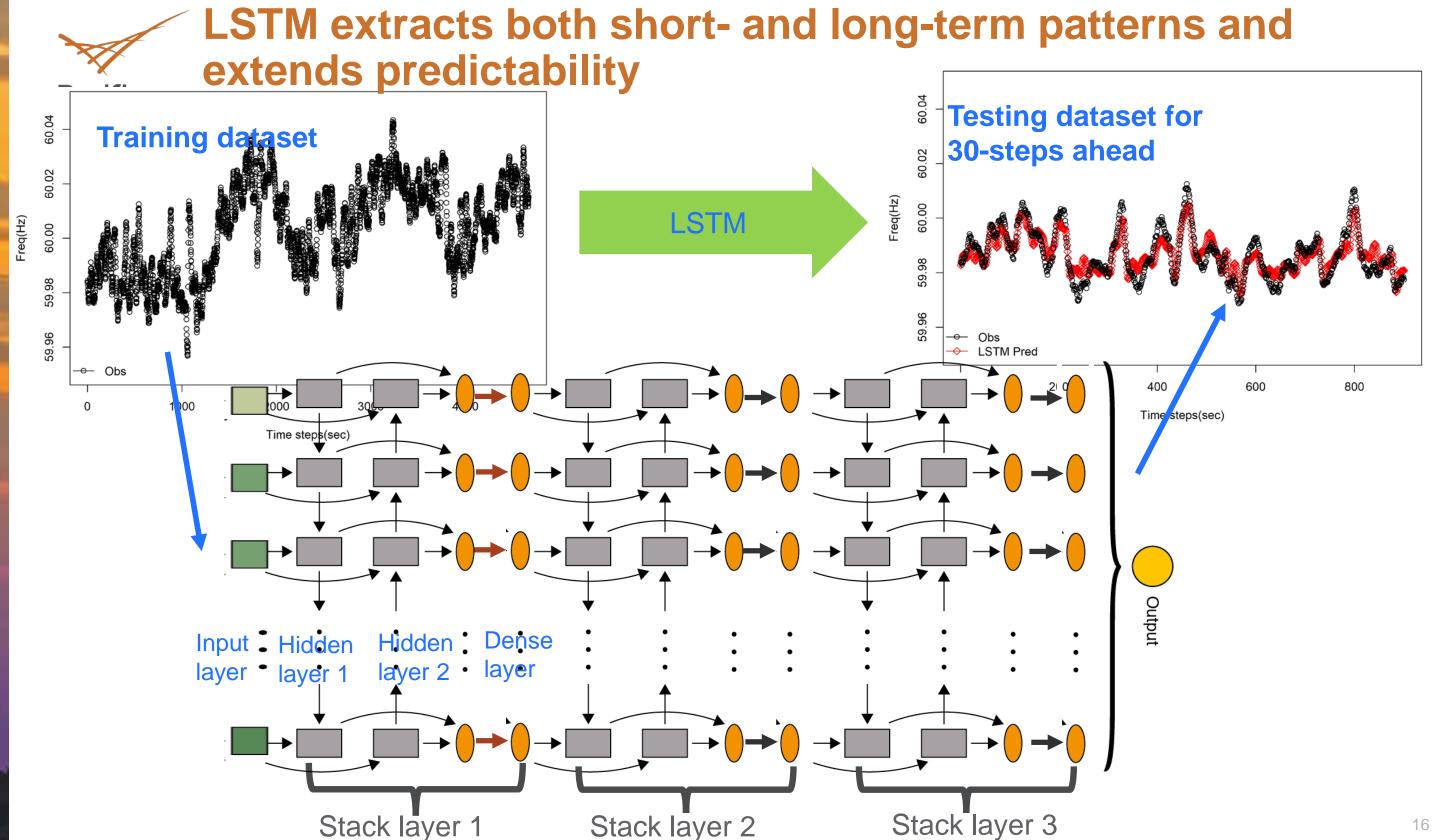


prediction error is then computed as: $P_i(X \le x) = \max(P_i(X \le x), 1 - P_i(X \le x))$

Criteria/Thresholds to Confirm an Event

- Threshold for exceedance probability: the prediction error is beyond X times of the corresponding standard deviation σ
- Threshold for duration: sequential points need to pass the screening in order to confirm an event.

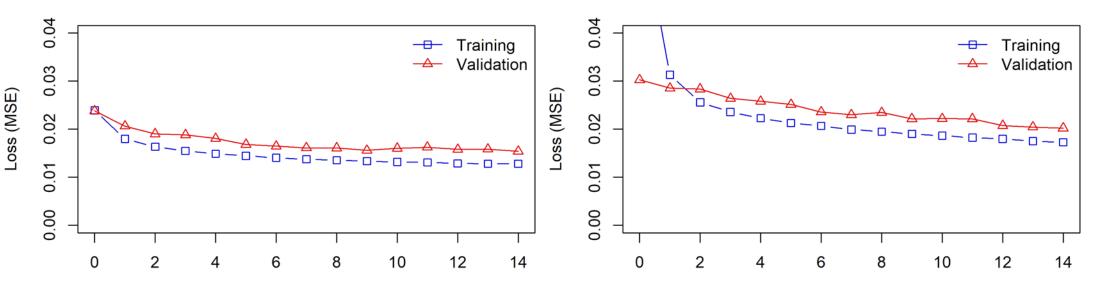




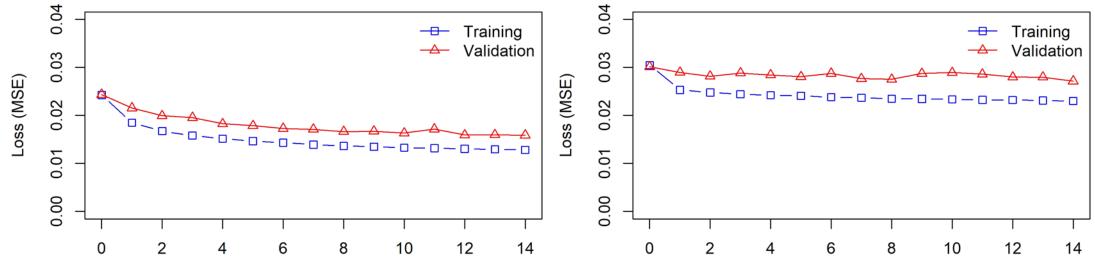
LSTM Model Evaluation: Training and Validation Loss

Input120, Pred15, units128, batch60, dropout0.3, learning

- \succ Training data: 70%
- > Validation data: 15%
- Testing data: 15%
- \succ Loss function: Mean squared error (MSE)
- > Model parameters: Input/output window, units, batch size, dropout rate



Input180, Pred15, units128, batch60, dropout0.3, learning1



Epoch

Input60, Pred15, units128, batch300, dropout0.8, learning1e-0

Input120, Pred30, units64, batch30, dropout0.8, learning1e-04

Epoch

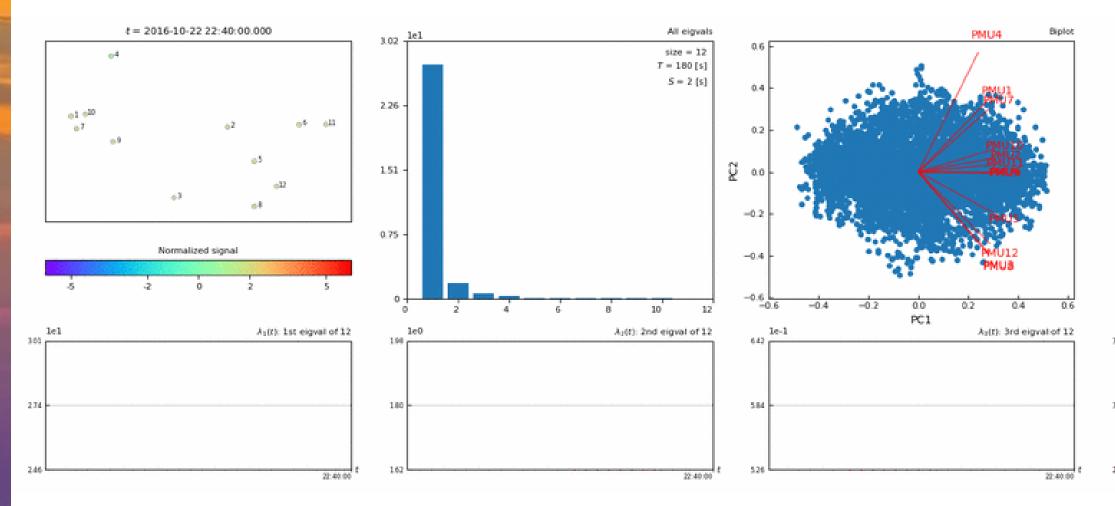
Understanding the Spatial and Temporal Patterns in Pacific **PMU Signals**

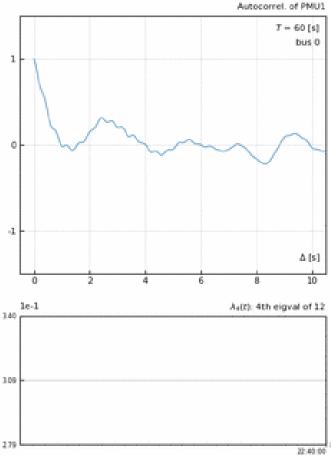
In additional to anomaly detection and classification practices, more data analytics can be used to understand the spatiotemporal behaviors of the PMU signals and the mechanisms

- Block Principal Component Analysis of PMU attributes
- >Auto- and cross-correlation Analysis of PMU attributes
- > Taylor Diagram across hours, days, seasons
- > Spectra analysis and anomaly matching of 'collocated' PMU and weather attributes

Block Auto-correlation and Principal Component Analysis to Monitor Temporal Patterns in PMU attributes

Video demonstration

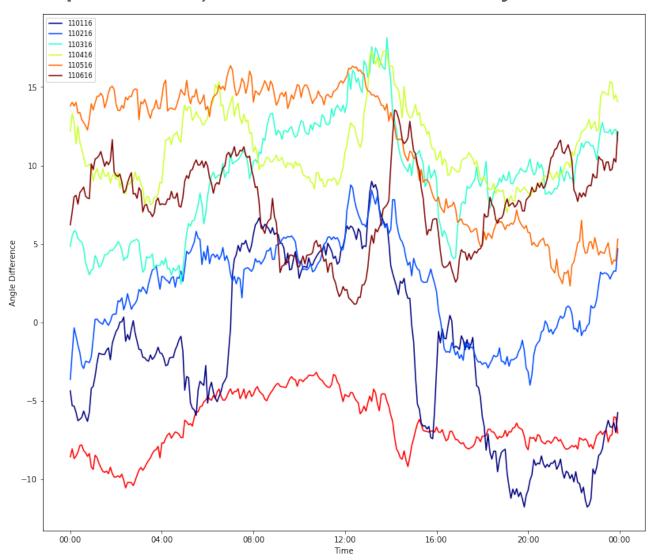


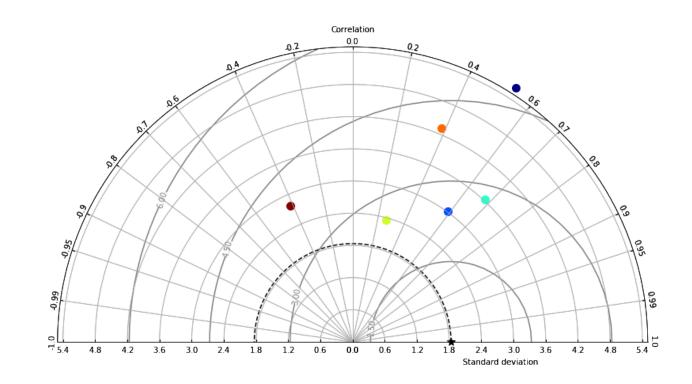


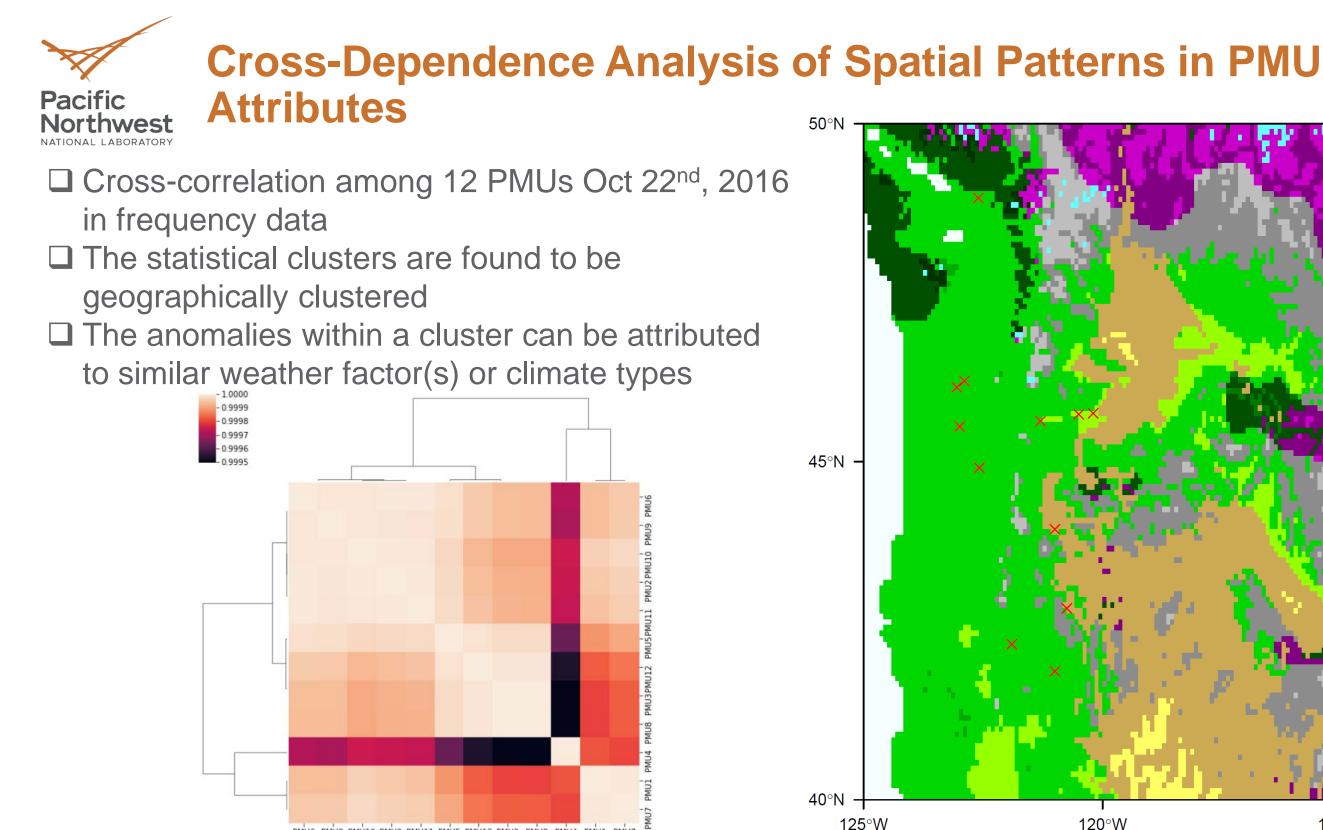
19

Taylor Diagrams for Evaluating Temporal Similarities

Taylor Diagrams help identify similarities (in both absolute magnitudes and patterns) across hours, days, and seasons

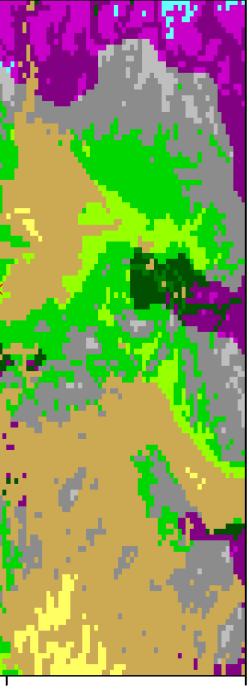






PMU6 PMU9 PMU10 PMU2 PMU11 PMU5 PMU12 PMU3 PMU8 PMU4 PMU1

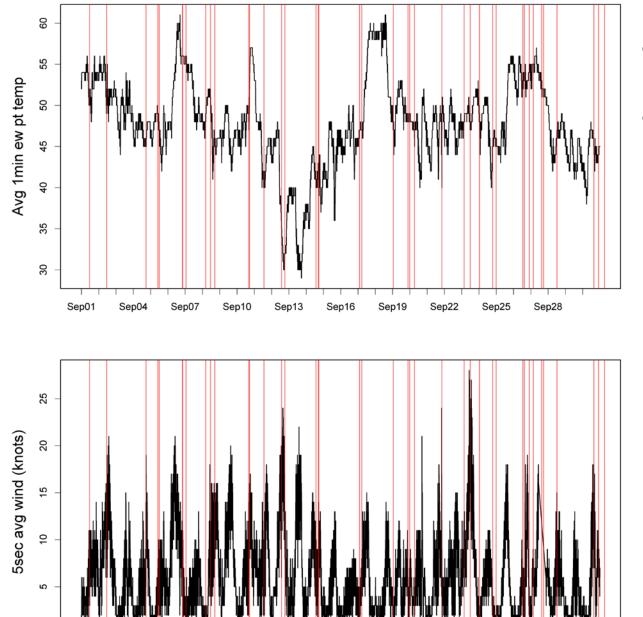
120°W



115°W

21

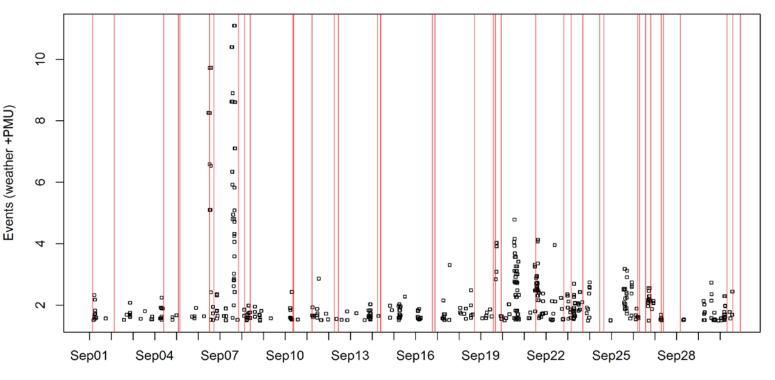
Extreme Weather Drives PMU Events



0

- The red vertical lines are the historical recorded events
- The black lines are the weather attributes (e.g., dew point, wind speed, precipitation)

Spectra analysis and anomaly matching of 'collocated' PMU and weather attributes



Conclusions and Future Plans

- Spark cluster for ML and PMU (big data) analysis was deployed. It is based on the PNNL institution cloud system.
- PMU data have been collected and archived in PDAT format (PMU data) stream from PBA to PNNL EIOC).
- Methodologies for both online and offline anomaly detection have been developed.
- Python (PySpark) modules are under development, with the following functions:
 - PDAT data extraction and preparation;
 - Event detection and classification with multiple resolution analysis, state space models, and deep recurrent neural networks;
 - Evaluation of spatial and temporal behaviors and identification of the potential driver.

Thank you

Pavel.Etingov@pnnl.gov Zhangshuan.Hou@pnnl.gov Huiying.Ren@pnnl.gov Heng.Wang@pnnl.gov

