Exceptional service in the national interest

Data Considerations in Real-Time PMU Feedback Control Systems

David Schoenwald, Felipe Wilches-Bernal, Dan Trudnowski Brian Pierre, Ryan Elliott Montana Technological University Sandia National Laboratories

> NASPI Work Group Meeting San Diego, CA April 16, 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2019-4119C

Damping Controller Overview

Problem:

- Large generation and load centers separated by long transmission corridors can develop inter-area oscillations
- Poorly damped interarea oscillations jeopardize grid stability and can lead to widespread outages during high demand
- To prevent this, utilities constrain power flows well below transmission ratings → inefficient

Solution:

- Construct closed-loop feedback signal using real-time PMU (Phasor Measurement Unit) data: 1st demonstration of this in North America
- Modulate power flow on PDCI (Pacific DC Intertie) up to +/- 125 MW
- Implement a supervisory system to ensure "Do No Harm" to grid and monitor damping effectiveness

Benefits:

- Improved grid reliability
- Additional contingency for stressed grid conditions
- Avoided costs from a system-wide blackout (>> \$1B)
- Reduced or postponed need for new transmission capacity: \$1M-\$10M/mile
- Helps meet growing demand by enabling higher power flows on congested corridors

Damping Controller Strategy

Controller Employs Diversity and Redundancy in Feedback

- Diversity = Geographical Robustness
- Redundancy = Site Measurement Robustness
- Controller evaluates 16 feedback pairs every update cycle to provide options due to any network issues
- Controller seamlessly switches between feedback pairs to avoid injecting step functions into the system

Latest Tests Confirm 2016-2017 Test Results (Tests conducted at Celilo on May 23, 2018)

Sandia

National Laboratories

COI Power Flows Show Similar Damping Improvement (Tests conducted at Celilo on May 23, 2018)

Real and reactive power flows through the COI right after a Chief Joseph Brake insertion.

Gain Tuning was Informed by Square Wave Pulses (Tests conducted at Celilo on May 23, 2018)

Lower gains → less damping improvement Higher gains → more "ringing" on the DC side Sweet spot → K = 12 to 15 MW/mHz

May 16, 2017 Tests, 0.4 Hz Forced Oscillation

MV

Time (sec.)

Events on the DC Side Provide a Good Basis of Comparison for Controller Performance

Two very similar events are captured. May 6 – controller was not connected. June 11 – controller was in closed-loop operation.

This plot zooms in on the y-axis to show controller modulation (June 11 curve).

Sandia National

I aboratories

Communication and Delays

Name	Mean	Range	Note
PMU Delay	44	40 - 48	Dependent on PMU settings. Normal distribution.
Communication Delay	16	15 – 40	Heavy tail
Control Processing Delay	11	2 – 17	Normal around 9 ms, but a peak at 16 ms due to control windows when no data arrives (inconsistent data arrival)
Command Delay	11	11	Tests were consistent, fixed 11 ms
Effective Delay	82	69 – 113	Total delay

Total time delays are well within our tolerances (<< 150 ms)

• PMUs have inconsistent interpacket delays

Delay inconsistency also affects the power command

Sandia

National Laboratories

PMU Data Considerations

- Time alignment
 - The North and South measurements need to have the same PMU timestamp
 - Supervisory system time aligns the data
 - If data is too far apart, the control instance is disabled,
- Other PMU data issues
 - Data dropout: Supervisory system catches data dropouts and disables that controller instance
 - Corrupted data:
 - Supervisory system flags irregular data (e.g. repeated values, missing time stamps)

Damping Control Using Distributed Energy Resources

Advantages:

- Robust to single points of failure
- Controllability of multiple modes
- Size/location of a single site not critical as more distributed energy resources are deployed on grid
- With 10s of sites engaged, single site power capability ≈ 1 MW can provide improved damping
- Control signal is energy neutral and short in time duration → sites can perform other applications

Damping Control Using Wind Turbines

- PDCI damping controller was modified to modulate the torque command of a wind turbine at Sandia wind facility (SWiFT)
- Actuator (wind turbine) is remote not co-located with the controller
- Communication channel used the public internet

Key Takeaways

- First successful demonstration of wide-area control using real-time PMU feedback in North America → much knowledge gained for networked control systems
- Control design is actuator agnostic

 easily adaptable to other sources of power injection (e.g., wind turbines, energy storage)
- Supervisory system architecture and design can be applied to future real-time grid control systems to ensure "Do No Harm"
- Algorithms, models, and simulations to support implementation of control strategies using distributed grid assets
- Extensive eigensystem analysis and visualization tools to support simulation studies and analysis of test results
- Model development and validation for multiple levels of fidelity to support analysis, design, and simulation studies

Future Research Recommendations

- Control designs to improve transient stability and voltage stability
- > Assessment & mitigation of forced oscillations (both AC and HVDC)
- > Enhancements to improve resilience of transmission grids
 - Design of control architectures that are more robust to single points of failure (e.g. decentralized control)
 - Control designs that leverage large #'s of distributed assets (e.g. power sources, measurement systems) to improve performance and reliability of transmission grids
- > Analytics to improve transmission reliability
 - Real-time PMU data represents an enormous amount of data: How does one manage this amount of data? How can one leverage the data for key information? Potential techniques include machine learning
- > We gratefully acknowledge the support of:
 - BPA Office of Technology Innovation PM: Gordon Matthews
 - DOE-OE Transmission Reliability Program PM: Phil Overholt
 - DOE-OE Energy Storage Program PM: Imre Gyuk