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Problem:
• Large generation and 

load centers separated 
by long transmission 
corridors can develop 
inter-area oscillations

• Poorly damped inter-
area oscillations 
jeopardize grid stability 
and can lead to 
widespread outages 
during high demand

• To prevent this, utilities 
constrain power flows 
well below transmission 
ratings  inefficient

Solution:
• Construct closed-loop 

feedback signal using 
real-time PMU (Phasor 
Measurement Unit) data:      
1st demonstration of this 
in North America

• Modulate power flow on 
PDCI (Pacific DC Intertie)
up to +/- 125 MW

• Implement a supervisory 
system to ensure “Do No 
Harm” to grid and 
monitor damping 
effectiveness

Benefits:
• Improved grid reliability

• Additional contingency for 
stressed grid conditions

• Avoided costs from a 
system-wide blackout    
(>> $1B)

• Reduced or postponed 
need for new transmission 
capacity: $1M–$10M/mile

• Helps meet growing 
demand by enabling 
higher power flows on 
congested corridors

Damping Controller Overview
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PMUs take measurements

PMUs send data packets over network

Packets arrive at damping controller

Controller sends power command to PDCI

PDCI injects power command into grid

Damping Controller Strategy
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𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒕𝒕 = 𝑲𝑲 𝒇𝒇𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝒕𝒕 − 𝝉𝝉𝒅𝒅𝟏𝟏 − 𝒇𝒇𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝒕𝒕 − 𝝉𝝉𝒅𝒅𝟐𝟐
𝑲𝑲 is a constant gain with units of MW/mHz

Real-time PMU 
feedback

is the key to 
stable control



Controller Employs Diversity 
and Redundancy in Feedback
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• Diversity = Geographical Robustness
• Redundancy = Site Measurement Robustness
• Controller evaluates 16 feedback pairs every update cycle 

to provide options due to any network issues
• Controller seamlessly switches between feedback pairs 

to avoid injecting step functions into the system
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Latest Tests Confirm 2016-2017 Test Results
(Tests conducted at Celilo on May 23, 2018)

Generator drop in south
unrelated to testing

Gain = 9 MW/mHz 
Damping improved by 
4.5 percentage points 
(10.0% to 14.5%)

Gain = 15 MW/mHz 
Damping improved by 6 
percentage points 
(10.0% to 16.0%)

Chief Joseph brake test

Chief Joseph brake test
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COI Power Flows Show Similar 
Damping Improvement

(Tests conducted at Celilo on May 23, 2018)

Generator drop in south
unrelated to testing

Real and reactive power flows through the COI 
right after a Chief Joseph Brake insertion.
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Gain Tuning was Informed by Square Wave Pulses
(Tests conducted at Celilo on May 23, 2018)

Lower gains  less damping improvement
Higher gains  more “ringing” on the DC side
Sweet spot  K = 12 to 15 MW/mHz



May 16, 2017 Tests, 0.4 Hz Forced Oscillation
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Events on the DC Side Provide a Good Basis 
of Comparison for Controller Performance

Two very similar 
events are captured.  

May 6 – controller 
was not connected.
June 11 – controller 
was in closed-loop 

operation.

This plot zooms in 
on the y-axis to 
show controller 

modulation (June 11 
curve).
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PMUs take
measurements

PMUs send
data packets

Packets
arrive at
controller

Controller
dispatches
command PDCI acts

Communication and Delays

Name Mean Range Note
PMU 
Delay 44 40 – 48 Dependent on PMU settings. 

Normal distribution.
Communication 
Delay 16 15 – 40 Heavy tail

Control 
Processing 
Delay

11 2 – 17

Normal around 9 ms, but a peak 
at 16 ms due to control windows 
when no data arrives (inconsistent 
data arrival)

Command 
Delay 11 11 Tests were consistent, fixed 11 ms

Effective Delay 82 69 – 113 Total delay

Total time delays are well within our tolerances (<< 150 ms)
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PMU Data Considerations
• PMUs have inconsistent interpacket delays
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PMU Data Considerations
• Time alignment

- The North and South 
measurements need to have 
the same PMU timestamp

- Supervisory system time 
aligns the data

- If data is too far apart, the 
control instance is disabled

• Other PMU data issues
- Data dropout:

Supervisory system catches 
data dropouts and disables 
that controller instance

- Corrupted data:
Supervisory system flags 
irregular data (e.g. repeated 
values, missing time stamps)
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Advantages:
• Robust to single points of failure
• Controllability of multiple modes
• Size/location of a single site not 

critical as more distributed energy 
resources are deployed on grid

• With 10s of sites engaged, single 
site power capability ≈ 1 MW can 
provide improved damping

• Control signal is energy neutral 
and short in time duration  sites 
can perform other applications

Damping Control Using Distributed 
Energy Resources
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Damping Control Using Wind Turbines
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• PDCI damping controller was modified to modulate the torque 
command of a wind turbine at Sandia wind facility (SWiFT)

• Actuator (wind turbine) is remote – not co-located with the controller
• Communication channel used the public internet
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Key Takeaways

• First successful demonstration of wide-area control using real-time 
PMU feedback in North America  much knowledge gained for 
networked control systems

• Control design is actuator agnostic  easily adaptable to other 
sources of power injection (e.g., wind turbines, energy storage)

• Supervisory system architecture and design can be applied to 
future real-time grid control systems to ensure “Do No Harm”

• Algorithms, models, and simulations to support implementation of 
control strategies using distributed grid assets

• Extensive eigensystem analysis and visualization tools to support 
simulation studies and analysis of test results

• Model development and validation for multiple levels of fidelity to 
support analysis, design, and simulation studies
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Future Research Recommendations
 Control designs to improve transient stability and voltage stability
 Assessment & mitigation of forced oscillations (both AC and HVDC)
 Enhancements to improve resilience of transmission grids

• Design of control architectures that are more robust to single 
points of failure (e.g. decentralized control)

• Control designs that leverage large #’s of distributed assets (e.g. 
power sources, measurement systems) to improve performance 
and reliability of transmission grids

 Analytics to improve transmission reliability
• Real-time PMU data represents an enormous amount of data:

How does one manage this amount of data?
How can one leverage the data for key information?
Potential techniques include machine learning
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