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The Electric Network

20 kV

40 buses

30 MW peak

6 MW peak CHP
2.5 MW peak PV

1 MW peak, 0,5 MWh Li-Titanate
Energy Storage System

Asja Derviskadi¢, DESL-EPFL



m

§ NASPI Meeting, Point-on-wave Data of EPFL-campus

The Sensing Infrastructu
e e.‘SI ng n m re —— Bus oxxxw Zero-injection bus () Voltage meas.

D rois D rove vt
= 5 P-class PMUs o
= FPGA-based =» National Instruments cRIO \
= Synchrophasor Estimation = e-IpDFT . ) 3 )
= TVE ~ 0.0X % . wan @ e © nn [ osa @

0
» FE< 0.4 mHz uw% 2:w% 1:w% 1260 kv &
= GPS sync = 100 ns accuracy @

= Voltage sensors =» Capacitive 0.1-class
= Current sensors = Rogowsky 0.5-class
= Communication =» Twisted pairs + fiber
= Data frames =» 50 fps — UDP
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The Battery Energy Storage System (BESS)

= 560 kWh/720 kVA BESS
= Lithium titanate oxide (LTO) cells

= Series and parallel to form 9 battery ®

racks
= DC bus 590 : 810V
= Four quadrant DC-AC converter
= 0.3/21 kV, 630 kVA transformer

= Active and reactive power setpoints
request to the converter via
ModBUS TCP

IS
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L The Waveform Recorder Functionality

MV Switchgear (SF6)

O 0O

il

WAY DE9

BESS Container

b 4
/7

-ONHI!

PMU

PMU-WR

PDC

*I ROCOF ctrl

More information available at:
https://qithub.com/DESL-EPFL/
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=L The Acquired Point-on-Wave Data
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The Signal Model

The waveforms can be modelled as the sum of three main contributions:
y(t) = A1 (t) - cos(2mfy ()t + 1(t)) +n(t) + (b

* A4, f1, 91 fundamental component time-varying parameters
* n(t) narrow-band disturbances, i.e. (inter-)harmonics
o £(t) wide-band disturbances, i.e. measurement noise

The proposed PMU is able to identify also the disturbance contributions:
= (inter-)harmonic synchrophasors
= noise statistical model (e.g. PDF)

OBJECTIVE: accurate estimation of both fundamental and (inter-)harmonic
synchrophasors in dynamic conditions over window lengths in the order of 102 ms.

-~
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Identification method

In order to track the signal time-variations, the proposed approach considers:
= a window length of 200 ms, i.e. 10 cycles at 50 Hz (as suggested by IEC Std 61000)
= a reporting rate of 100 fps, i.e. update every 10 ms (max rate of IEEE Std ¢37.118.1)

= Given a signal window, the identification method consists of the following steps:

DC identification and removal
fundamental phasor estimation
harmonic support definition
Taylor-Fourier expansion basis
harmonic phasors’ estimation
estimation residual update
inter-harmonic peak search
repeat steps4-5-06

© 0 N o ok~ wWwDdPRE

noise model identification

x =y —E(y) =x —mean(y)
{A1, f1, 01} = x; = IFIpDFT(x)
S={f=fi-h|h=2,..50}

B = TEM(S, 2)

{AhJ fhi QDh} = Xp = (BHB)_lBHx
r=x —YXn,xp, h=1,..50

{fi} = findpeak(r) - § = {f; U fi.}
r=x —n=x -y -5y
e=N (mean(r), std(r))
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Harmonic Phasor Extraction
The (inter-)harmonic phasor extraction relies on the combined application of:
= |terative Interpolated DFT (i-lIpDFT)
= Taylor-Fourier basis expansion (cs-TFM)
I-IpDFT cs-TFM

based on a static signal model based on a dynamic signal model

(stationarity assumption) (2nd order Taylor-Fourier expansion)
IEEE Std C37.118.1 class P + M IEEE Std C37.118.1 class M

compensation of spectral leakage account for time-varying parameters
effects (other tones, neg frequency) within the observation window

The combined i-IpDFT + cs-TFM approach allows for a two-fold objective:
= i-IpDFT: accurate definition of fundamental frequency f; = spectral support §
= ¢s-TFM: accurate estimation of time-varying harmonic phasors 4y, (t) - e/®r(®)

Dr. Guglielmo Frigo, DESL-EPFL e



=PFL Results: Fundamental Frequency

= Acquired three-phase waveforms of voltage VO (a) and current I-A (b)

=
o
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=PFL  Results: Harmonic Phasors

= Spectral representation of the current I-A phase a over a 100 ms window:
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Results: Estimated THD

= Looking in more detail to the time evolution of 13th order harmonic amplitudes:
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Uncorrelated random trends

» three-phases are not perfectly coincident

e mutual correlation lower than 90%

= Based on these harmonic amplitudes, we compute the corresponding THD:

time [s]

Total Harmonic Distortion variations

o different mean values, and std. devs. ~ 0.15%

» results compliant with Matlab routine (SVD)
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Measurement Noise Model

Once removed fundamental and (inter-)harmonics, the residuals are just noise:

50 T T T T T

Measurement noise

N
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i ¢ nearly-stationary trend

» uncorrelated wideband noise
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It is possible to identify two main components of the recovered meas. noise:
= nearly-stationary trend + DC
= uncorrelated wideband noise

Nearly stationary trend approximated by means of a low-pass filter (Savitzky-Golay
filter, polynomial order 3, window length 20 ms).

Uncorrelated wideband noise approximated by means of a Gaussian random
variable characterized by residuals’ mean and variance.

=Y
)
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L

amplitude [mV]

probability

Results: Noise Statistical Model

= Nearly-stationary trend:
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Savitzky-Golay filter output

e capable of tracking low-frequency trend

» smoothened 3 order approximation

Gaussian noise model

» the model fits well all the three-phases

» comparable histogram distributions
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Conclusions

We integrated the waveform recording (WR) functionality in our DESL-PMU:

= ROCOF measurements govern the recording action
= acquired data repository is available on Github

Acquired data processing enables us to determine the harmonic and inter-
harmonic content and the statistical distribution of measurement noise:

= realistic disturbance levels for network modeling and control applications

= useful information for developing enhanced state estimators or for identifying
possible non-linear effects in the acquisition system

In our experimental scenario we noticed:

voltage waveforms - THD =~ 1%, SNR = 40 dB
current waveforms - THD =~ 16%, SNR =~ 35 dB
harmonic phasors with time-varying amplitudes
harmonic phasors uncorrelated among phases

=
L]
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