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 20 kV
 40 buses
 30 MW peak
 6 MW peak CHP
 2.5 MW peak PV
 1 MW peak, 0,5 MWh Li-Titanate

Energy Storage System

The Electric Network
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 5 P-class PMUs
 FPGA-based  National Instruments cRIO
 Synchrophasor Estimation  e-IpDFT
 TVE ~ 0.0X %
 FE < 0.4 mHz
 GPS sync  100 ns accuracy 
 Voltage sensors  Capacitive 0.1-class
 Current sensors  Rogowsky 0.5-class
 Communication  Twisted pairs + fiber
 Data frames  50 fps – UDP
 1 PDC

The Sensing Infrastructure
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 560 kWh/720 kVA BESS
 Lithium titanate oxide (LTO) cells 
 Series and parallel to form 9 battery 

racks 
 DC bus 590 : 810 V
 Four quadrant DC-AC converter
 0.3/21 kV, 630 kVA transformer
 Active and reactive power setpoints 

request to the converter via 
ModBUS TCP

The Battery Energy Storage System (BESS)
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The Waveform Recorder Functionality  
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More information available at:
https://github.com/DESL-EPFL/

https://github.com/DESL-EPFL/


The Acquired Point-on-Wave Data
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The waveforms can be modelled as the sum of three main contributions:
𝑦𝑦 𝑡𝑡 = 𝐴𝐴1(𝑡𝑡) ⋅ cos 2𝜋𝜋𝑓𝑓1 𝑡𝑡 𝑡𝑡 + 𝜑𝜑1 𝑡𝑡 + 𝜂𝜂 𝑡𝑡 + 𝜀𝜀(𝑡𝑡)

• 𝐴𝐴1,𝑓𝑓1,𝜑𝜑1 fundamental component time-varying parameters
• 𝜂𝜂 𝑡𝑡 narrow-band disturbances, i.e. (inter-)harmonics
• 𝜀𝜀(𝑡𝑡) wide-band disturbances, i.e. measurement noise

The proposed PMU is able to identify also the disturbance contributions:
 (inter-)harmonic synchrophasors
 noise statistical model (e.g. PDF)

OBJECTIVE: accurate estimation of both fundamental and (inter-)harmonic
synchrophasors in dynamic conditions over window lengths in the order of 102 ms.

The Signal Model
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In order to track the signal time-variations, the proposed approach considers:
 a window length of 200 ms, i.e. 10 cycles at 50 Hz (as suggested by IEC Std 61000)
 a reporting rate of 100 fps, i.e. update every 10 ms (max rate of IEEE Std c37.118.1)

 Given a signal window, the identification method consists of the following steps:
1. DC identification and removal 𝑥𝑥 = 𝑦𝑦 − E 𝑦𝑦 = 𝑥𝑥 − mean 𝑦𝑦
2. fundamental phasor estimation 𝐴𝐴1, 𝑓𝑓1,𝜑𝜑1 = 𝑥𝑥1 = i-IpDFT 𝑥𝑥
3. harmonic support definition 𝒮𝒮 = 𝑓𝑓ℎ = 𝑓𝑓1 ⋅ ℎ ℎ = 2, … 50}
4. Taylor-Fourier expansion basis 𝐵𝐵 = TFM 𝒮𝒮, 2
5. harmonic phasors’ estimation 𝐴𝐴ℎ, 𝑓𝑓ℎ,𝜑𝜑ℎ = 𝑥𝑥ℎ = 𝐵𝐵𝐻𝐻𝐵𝐵 −1𝐵𝐵𝐻𝐻𝑥𝑥
6. estimation residual update 𝑟𝑟 = 𝑥𝑥 − ∑ℎ 𝑥𝑥ℎ , ℎ = 1, … 50
7. inter-harmonic peak search 𝑓𝑓𝑖𝑖 = findpeak 𝑟𝑟 → 𝒮𝒮 = {𝑓𝑓𝑖𝑖 ∪ 𝑓𝑓ℎ}
8. repeat steps 4 – 5 – 6 𝑟𝑟 = 𝑥𝑥 − 𝜂𝜂 = 𝑥𝑥 − ∑ℎ 𝑥𝑥ℎ − ∑𝑖𝑖 𝑥𝑥𝑖𝑖
9. noise model identification 𝜀𝜀 = 𝒩𝒩 mean 𝑟𝑟 , std 𝑟𝑟

Identification method
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The (inter-)harmonic phasor extraction relies on the combined application of:
 Iterative Interpolated DFT (i-IpDFT)
 Taylor-Fourier basis expansion (cs-TFM)

Harmonic Phasor Extraction
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The combined i-IpDFT + cs-TFM approach allows for a two-fold objective:
 i-IpDFT: accurate definition of fundamental frequency 𝑓𝑓1  spectral support 𝒮𝒮
 cs-TFM: accurate estimation of time-varying harmonic phasors 𝐴𝐴ℎ 𝑡𝑡 ⋅ e𝑗𝑗𝜑𝜑ℎ 𝑡𝑡

i-IpDFT
• based on a static signal model 
• (stationarity assumption)
• IEEE Std C37.118.1 class P + M
• compensation of spectral leakage 

effects (other tones, neg frequency)

cs-TFM
• based on a dynamic signal model
• (2nd order Taylor-Fourier expansion)
• IEEE Std C37.118.1 class M
• account for time-varying parameters 

within the observation window



 Acquired three-phase waveforms of voltage V0 (a) and current I-A (b)

 Fundamental frequency 𝑓𝑓1 as estimated on V-0 (less distorted than current)

Results: Fundamental Frequency
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Fundamental frequency time-evolution:

• 𝑡𝑡 = 0, 0.8 𝑠𝑠 is stable around 50.01 Hz

• 𝑡𝑡 = 0.8, 2 𝑠𝑠 increases up to 50.09 Hz



 Spectral representation of the current I-A phase a over a 100 ms window:

 Harmonic phasor variability (min-max range) for the current I-A three-phase:

Results: Harmonic Phasors
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Harmonic content (THD ≃ 15%)

• highest harmonics within [250, 1250] Hz

• higher amplitude for odd-order harmonics

Harmonic amplitude range

• high variability also among odd-orders

• scarce correlation between the phases



 Looking in more detail to the time evolution of 13th order harmonic amplitudes:

 Based on these harmonic amplitudes, we compute the corresponding THD:

Uncorrelated random trends

• three-phases are not perfectly coincident

• mutual correlation lower than 90%

Total Harmonic Distortion variations

• different mean values, and std. devs. ≃ 0.15%

• results compliant with Matlab routine (SVD)

Results: Estimated THD
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Once removed fundamental and (inter-)harmonics, the residuals are just noise:

Measurement Noise Model
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Measurement noise

• nearly-stationary trend

• uncorrelated wideband noise

It is possible to identify two main components of the recovered meas. noise:
 nearly-stationary trend + DC
 uncorrelated wideband noise

Nearly stationary trend approximated by means of a low-pass filter (Savitzky-Golay
filter, polynomial order 3, window length 20 ms).
Uncorrelated wideband noise approximated by means of a Gaussian random 
variable characterized by residuals’ mean and variance.



Savitzky-Golay filter output

• capable of tracking low-frequency trend

• smoothened 3rd order approximation 

Gaussian noise model

• the model fits well all the three-phases

• comparable histogram distributions

 Nearly-stationary trend:

 Gaussian random variable:

Results: Noise Statistical Model
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We integrated the waveform recording (WR) functionality in our DESL-PMU:
 ROCOF measurements govern the recording action
 acquired data repository is available on Github

Acquired data processing enables us to determine the harmonic and inter-
harmonic content and the statistical distribution of measurement noise:
 realistic disturbance levels for network modeling and control applications 
 useful information for developing enhanced state estimators or for identifying 

possible non-linear effects in the acquisition system

In our experimental scenario we noticed:
 voltage waveforms  THD ≃ 1%,   SNR ≃ 40 dB
 current waveforms  THD ≃ 16%, SNR ≃ 35 dB
 harmonic phasors with time-varying amplitudes
 harmonic phasors uncorrelated among phases

Conclusions
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 Dataset repository and network configuration:
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