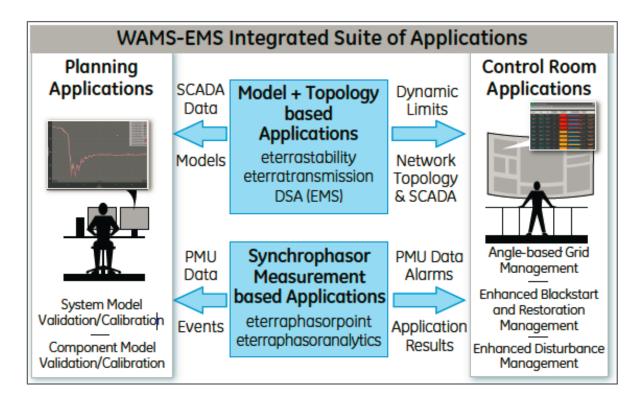


PhasorAnalytics-Commercial tool for disturbance based model validation and **calibration**Acknowledgement: This work is supported by the US Department of Energy under Award Number DE-

OE0000858.

Presenter: Honggang Wang, Krish Srinivasan

October 23, 2018



Project Overview

- Develop and demonstrate multiple productiongrade synchrophasor applications to enhance grid reliability and asset utilization through utilization of existing WAMS infrastructure along with EMS network applications available at control rooms
- Project includes field demonstrations at multiple utility locations Model Validation/Calibration tool for improving models to meet emerging NERC requirements
 - Angle-based grid management tool for improved transmission asset utilization applied to voltage stability limited systems
 - Demonstration of Operator guidance tool for enhanced blackstart/restoration and disturbance management

Team Chart

GE Global

Research

Carol Painter: DOE Project Officer Phil Overholt: DOE program mgr. Jeff Dagle: Technical advisor from

PNNL

Honggang Wang: PI. PMP, reports, site visit review

Utility Partners

tool.

Alex Santos: Contract manager Na Jing: Financial Analyst

Developers

Lead FAT and field demos, Develop model cal., AGM and operator guidance software

tools; Model val./cal. platform

integration of PSLF & TSAT with WAMS product

Manu Parashar
Director-SW engineering
Anil Jampala
Principal Power Systems
Saugata Biswas
AGM/EDM/EIM Design
Krish Srinivasan
Model Cal Integration
Russ Frizzell-Carlton
Model Cal Integration
Vijay Sukhavasi
AGM/F

Development of model calibration techniques, angle-based grid management, factory acceptance testing

Honggang Wang Phil hart Mustafa Dokucu Jovan Bebic Chaitanya Baone

Jovan Bebic Chaitanya Baone Anup Menon Naresh Acharya Yan Pan

Model validation/ calibration platform integration of PSLF with WAMS product

Haris Ribic Juan Sanchez-Gasca Brian Thomas Develop APIs to enable

Communication

between WAMS

product and PSLF

The Power of Trust. The Future of Energy.

Model validation/ calibration platform integration of TSAT with WAMS product, assist with AGM

George Zhang
Develop APIs to
enable
Communication
between WAMS
product and PSLF

Provide cost share, test data and models, assist/host applications in QA environment,

Field tests

Keith MitchellField demo for AGM and operator guidance.

Provide cost share, test data and models, assist/host applications in QA environment,

Field tests

Sherman Chen Field demo for Model Validation/ Calibration tool.

Provide test data and models, feedback on developed Applications;

Field tests

Provide feed developed Applications

Xiaochuan Luo
Frankie Zhang
Field demo for Model
Validation/ Calibration

Hong
Alex
Techn

Hongming Zhang Alex Ning Technical advisor

3

Task 1: Disturbance based Model Validation & Calibration

Motivation


Generic tool for generator owner to be compliant with NERC Requirement (MOD-026/033)

Objective

Production-grade software solution which can work across multiple commercial dynamic simulation engines

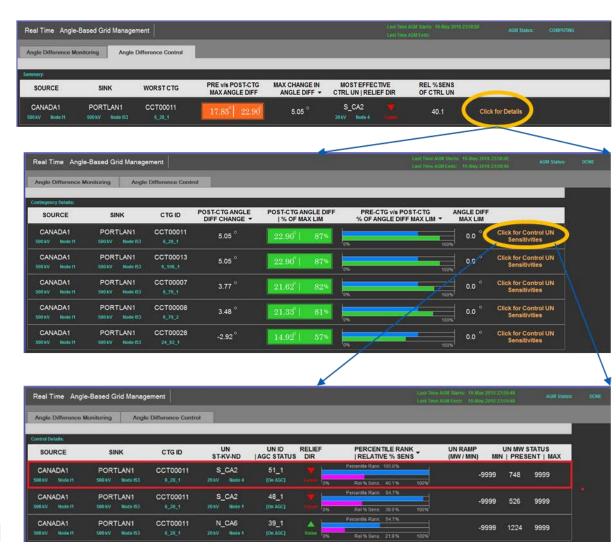
Accomplishment

- Functional specification completed.
- Algorithm developed and tested with simulated data.
- Software platform integration with simulation tool PSLF completed.
- Paper titled "Synchrophasor Based Dynamic Model Validation Leveraging Multiple Events" presented at the 2018 IEEE Innovative Smart Grid Technologies (ISGT) Conference.
- Paper titled "Towards a Commercial-grade Tool for Disturbancebased Model Validation and Calibration" at 2018 IEEE PES neral Meeting.

Multi-team Collaboration

Task 2: Angle-based Grid Management for Voltage Stability Assessment

Motivation


To enhance the real time visibility and grid asset utilization

Objective

 Production-grade software solution for Fast Voltage Stability Assessment (FVSA) based on Voltage Anglebased information

Accomplishment

- Fast Voltage Stability Assessment (FVSA) functional specification completed.
- FVSA algorithm developed and tested with simulated data.
- FVSA software platform integration completed.
- FVSA software application factory acceptance testing completed.
- Presented "PMU Measurement-Model Based Voltage Security Monitoring Application" at the April 2018 NASPI eting and North America User Group Meeting in June 2018.

Task 3: Operator Guidance Tool

- Augment existing synchrophasor applications with detailed root cause assessment, what-if capabilities, and recommendations during islanding and other disturbance conditions.
- Demonstrate Enhanced Island Monitoring and Enhanced Disturbance Management at MISO.
 - Enhanced Island Monitoring (EIM) provides the exact cause and location of the islanding event, island size, island composition, information about circuit breaker(s) that can be closed by the operators to resynchronize the formed island from the main grid.

• Enhanced Disturbance Management (EDM) provides time of occurrence of a disturbance event event spread (wide area or local), event type and MW change during the event

Accomplishment

- Enhanced Island Management and Enhanced Disturbance Management tested with simulated data.
- Operator guidance field test plan document for deployment at MISO completed.

EIM Display for Restoration / Resynchronization

Upcoming Milestone & Field Tests

2018 Q4

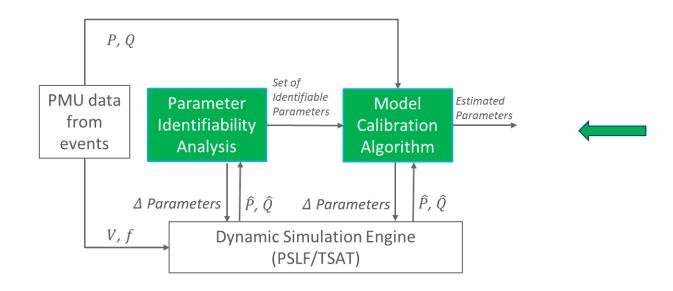
Milestone	Milestone Description	Due	Category
M10A	Dynamic model calibration algorithm tested with realistic data in target platform with PSLF	12/19/2018	Development
M22	Model Validation & calibration FAT using PSLF	12/19/2018	FAT/Field Demo
M30	Operator Guidance FAT	12/19/2018	FAT/Field Demo

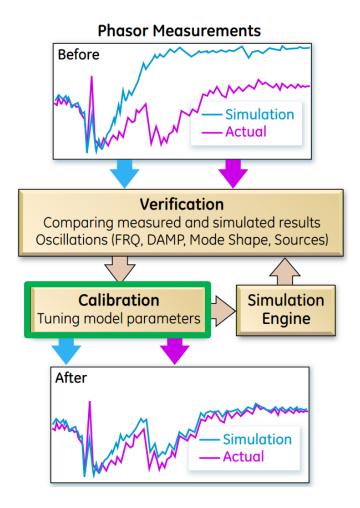
2019 Q1

Milestone	Milestone Description	Revised	Category
М6В	Model calibration software platform with TSAT	3/19/2019	Development
M10B	Dynamic model calibration algorithm tested with realistic data in target platform with TSAT		Development
M24	Model Validation & calibration FAT using TSAT	3/19/2019	FAT/Field Demo
M23	Model Validation field tests	3/19/2019	FAT/Field Demo
M28	AGM field test	3/19/2019	FAT/Field Demo
M31	Operator Guidance field test	3/19/2019	FAT/Field Demo

2019 Q2

Milestone	Milestone Description	Revised	Category
M25	Model Calibration field tests	6/19/2019	FAT/Field Demo

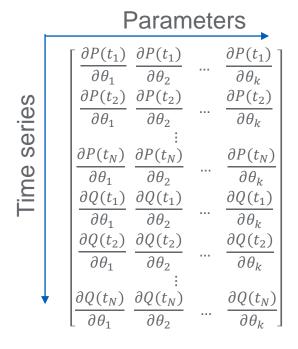

PhasorAnalytics Model Calibration Algorithm Development



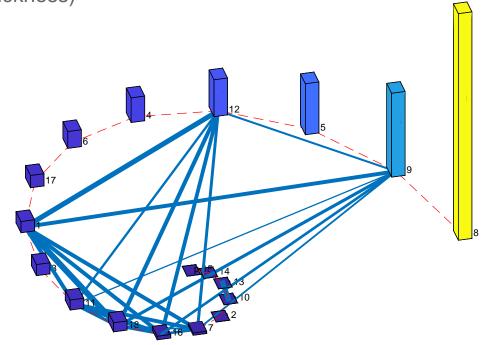
Two Stage Approach for Model Calibration

1. Design Considerations

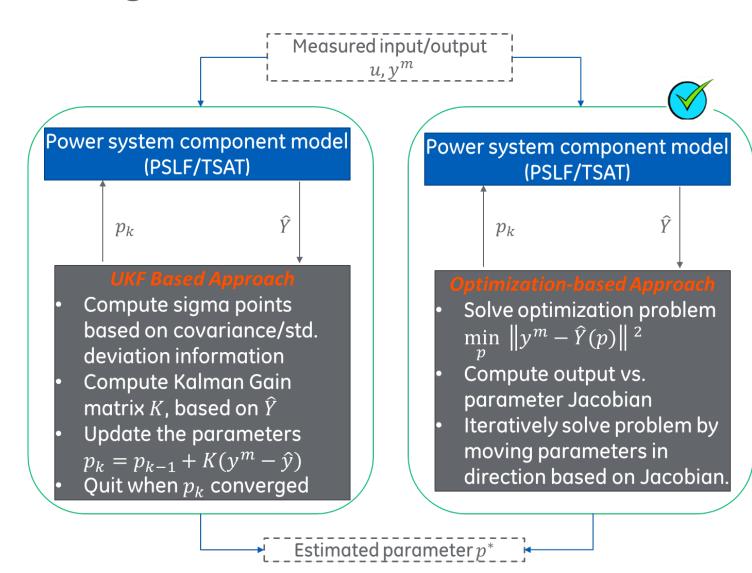
- **Production-grade** software tool
- **Generic** for wide variety of models (PSLF, TSAT and PTI PSS/E)
- Minimal data flow change on existing tools
- Account for **non-linearity** in models
- Quality of solution with reasonable speed
- Account for multiple different events
- Avoid tuning parameters that may already be at their true values



Stage I-Parameter Identifiability


Jacobian matrix, A =

- Rank deficiency of *A* can result from:
 - (1) very small entries in columns of A
 - (2) columns of *A* being nearly linearly dependent


Causing failure to identify parameters uniquely

- Sensitivity **magnitude**: reduces in counter-clockwise direction
- Sensitivity dependency: represented by connecting lines (thickness)

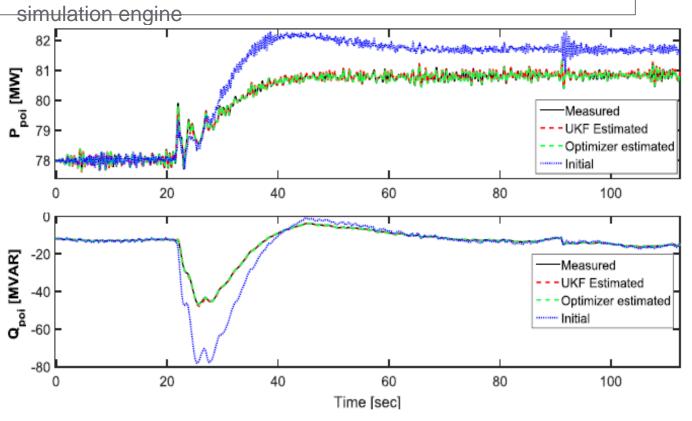
$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\intercal} \qquad \mathbf{M}_{sen} = \sum_{i=1}^{N_p} \sigma_i^2 \mathbf{v}_i^2.$$

Stage II-Parameter Estimation

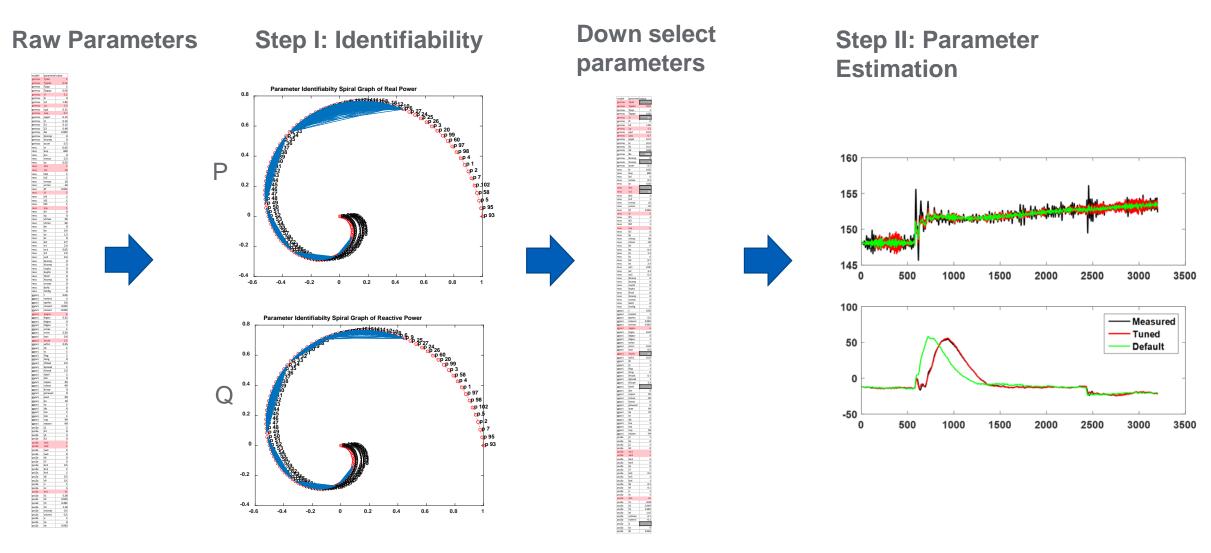
NLS Optimization approach is selected:

- Flexibility for customization
- Handling non-gaussian noise

Algorithm Improvement:


- Faster execution.
- Robustness during abnormality.
- Sequential parameter estimation for real-world sequential events.

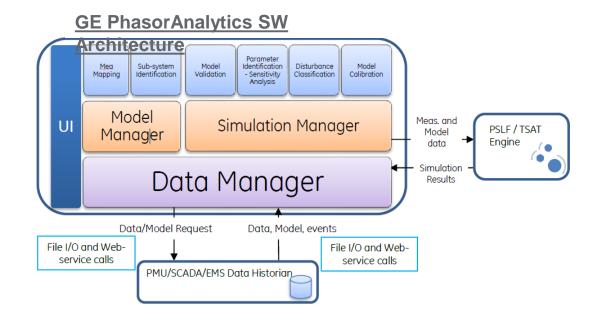
Example Result: Hydro Power Plant Model Calibration PMU data based dynamic model calibration for a Hydro power plant using NERC data set and GE PSLF

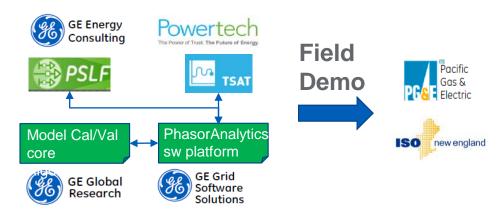

Parameter				
name	True	UKF	Optimization	Corrupt
'tpdo '	5.5	6.34	5.78	4.30
'h '	5.5	5.07	5.28	4.00
'lpd'	0.25	0.22	0.26	0.25
'tc'	0.9	0.50	0.94	2.10
'tb'	3.85	2.35	3.70	2.50
'ka'	125	103.13	124.05	50.00
'rperm'	0.065	0.06	0.07	0.05
'tr'	2.4	2.42	2.40	1.20
'tr'	0.012	0.01	0.01	0.01
'ks'	20	20.36	20.01	35.00
RMS ERROR:				
Perror	0	0.0037	0.0009	0.8108
Qerror	0	0.0413	0.0001	64.4184

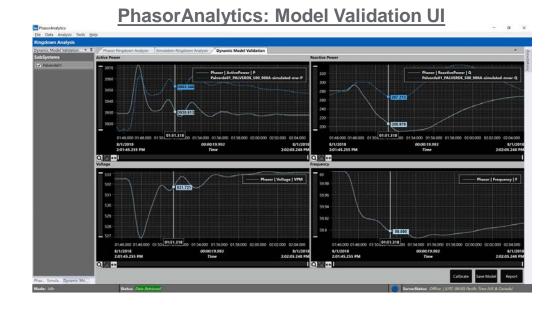
Qerror	0	0
Lego	end	
Within \pm 5%	of true value	è
Within \pm 20%	of true valu	e
Within \pm 50%	of true valu	e
Beyond ± 50%	of true valu	ie

Software Application Steps

Red -> corrupt




Dark Grey -> to be identified


Product Integration (PhasorAnalytics)

Lesson Learned

- Compatibility: Matlab (prototype) vs. C# (application)
- Performance: multi-platform handshake time longer than expected
- Robustness: exception handling & measurement noise
- Customer voice: fast iteration with utility partners

tacte

Live Demo

