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Outline and Main Messages

• Motivation & Background
o What is the threat level?
o Synchrophasor Technology Fundamentals
o Vulnerability of WAMPAC Systems (Cyber-Physical Threats)

• Experimental Methodology and Environment
o Methodology: How to lawfully attack (corrupt) GPS time? 
o Experimental set-up

• Experiments
o Impact on PMU Computations
o Impact of Time Synchronization Spoofing Attacks (TSSAs) on 

WAMPAC: Monitoring, Control and Protection
o PMU behaviors under Time-Synch perturbations

• Conclusions
• Future Work

Main Messages 
• Spoofing can affect PMUs and their 

applications.
• We need to understand and quantify their 

impact.
• To fully understand something, we need to 

reproduce it  do experiments!
• The presentation shows how to lawfully 

conduct experiments related to GPS 
spoofing, and to 

• Experimentally characterizes the 
mechanisms that make jeopardize PMU 
applications and the grid. 



The threat is real!
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Cyber-Physical Security 
Vulnerabilities of PMU Applications due to GPS Spoofing

• Synchrophasor applications can be 
affected by: 
o Both physical and cyber attacks

• Cyber & physical attacks can be 
directed to critical systems used by 
PMUs:
o Computer systems, communication 

systems,
o Timing systems (GPS)  critical for 

computer and communication, can be 
“spoofed”.
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GPS 
Spoofer

• GPS: The Global Positioning System, or GPS, is a satellite 
based navigation system developed by the United States 
Defense Department in the 1970's. 

• It provides three items to users:
 Position - Latitude, Longitude, and Height
 Velocity - Velocity North, East, and Up
 Time - in UTC (Universal Time Coordinated)

• GPS Time is the MASTER CLOCK!



Time Synchronization and
SynchroPhasors Interdependency Fundamentals

• PMU Accuracy Requirement: 
IEEE C37.118.1-2011 specifies 
a Total Vector Error (TVE) limit 
of 1% i.e. 0.5730 (degrees) or 
31.8 µs at 50 Hz.

• Blue: reference (perfect)

• Interdependency: WAMPAC 
applications depend on the 
accuracy of the 
synchrophasors, and 
consequently on the precision 
input time signals. 

• Vulnerability: The GPS
system can be interfered both 
intentionally and/or cosmically. 
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EXPERIMENTAL
METHODOLOGY AND ENVIRONMENT
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To interfere with Time Synchronization Systems

Make/Buy a GPS Jammer  NO
• Unlawful to intentionally interfere with GPS signal
• Impact on other technologies cellphone services, WIFI etc.

Due to the use of IRIG-B for time distribution, an alternative is to
Lawfully, generate/control/corrupt the IRIG-B signal 
distribution in a laboratory environment
• Develop IRIG-B signal generator

To characterize the impact on PMU Apps and the power grid
• Use Real-Time Hardware-in-the-Loop simulation 

o Simultaneously generate the voltage and current waveforms, AND the spoofed IRIG-B signal
• Put the RTS in the loop with real PMUs
• And the prototype PMU data applications: monitoring, control and protection

• Applications in this presentation:
• Monitoring - Phase Angle Monitoring (PAM), Control - oscillation damping, Protection - anti-islanding protection

Experimental Methodology (1/2) –
How to lawfully interfere with GPS? i.e. How to study the Time Synch. Signal attacks?
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Experimental Methodology (2/2) –
IRIG-B Signal Generator for Real-Time Simulators 
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• The TSSA is modeled through real-time IRIG-B signal generator, within the RT simulator.
• Possible to delay the time synchronization signals from microseconds to milliseconds.

https://github.com/ALSETLab/IRIG-B_for_RT

https://github.com/ALSETLab/IRIG-B_for_RT


Experimental Setup
Time Synch. Signal Spoofing

• IRIG-B generator and power 
system model executed in RTS

• PMU-A = reference PMU 
continuously receiving authentic 
(Reference) IRIG-B signals from 
the RTS.

• PMU-B = test PMU receives 
Spoofed IRIG-B signals from the 
RTS at a given point in time

• Two case studies for all 
experiments ( but only selected 
results in this presentation):
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EXPERIMENTS
IMPACT ON PMU COMPUTATIONS AND APPS
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Experiment(s) 1: Impact on
Synchrophasor Computation

11

As GPS time synchronization signal to PMU 2 is lost, its error in voltage phase angle computation increases. 
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• TSSA results in an error in voltage phase angle
computation beyond 0.5730 mark as soon as 
the time error increases beyond 30 µs, thus 
breaching the maximum allowable TVE limit. 

• The actual synchrophasors as computed by 
the PMU before and after time spoofing by 
1000 µs, thus resulting in a phase angle error 
of about 180



App. 1:
Phase Angle Monitoring Application
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Experiment(s) 2: Impact on
Phase Angle Monitoring App.
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Signal loss case: 
- 550 s after the disconnection the 

signal to PMU2 
- Erroneous increase in line 

loading from 80% to 92 % 
- Corrupt reading: from 625 MW to 

752 MW
Vφ

-B
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-3
8
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TSSA case:
- From t = 30 s, the TSSA is launched on

PMU-B (connected at Bus-43).
- Attack using steps of 10 µs at precisely

every 5 seconds.
- Within a span of 70 s:

- Erroneous increase in line loading of
12 %

- An increase in power transfer from
630 MW to 765 MW

By end of TSSA, at t = 100 s, phase error =
2.690 due to a time synchronization error of
150 µs.



App. 2:
Synchrophasor-based Passive Anti-Islanding Protection
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• Synchrophasor-based scheme and 
implementation:

• Experiment:
• If CB-1a, CB-1b and CB-2a, CB-2b are opened 

simultaneously, this results in an islanding condition with 
G1 supplying electric power to Load A at Bus 5. 

• Once the breakers are opened and the island is formed, 
G1 needs to be disconnected from the isolated network 
within 2 seconds as specified by IEEE Std. 1547-2008
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Experiment(s) 3: Impact on
PMU-based Passive Anti-Islanding Protection

Signal Loss Case:
• At 60 s, island is formed by opening CBs.
• The phase angle difference (blue trace) goes beyond 80 at 60.43 s (grey 

trace).
• Timer elapses 10 cycles, the PMU-B issues a trip command to disconnect 

the DG from the isolated island (green trace).
• This increases by 1.022 s for 20 % active power mismatch and 0.62 s for 30 

% active power mismatch.
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App. 3:
Wide-Area Phasor-Based Damping Control (WAPOD)

16

This WAPOD deployed in National Instrument’s cRIO embedded control platform:
• Receives local and/or remote synchrophasors as inputs,
• Control Algorithm Implemented in the controller’s FPGA:

• Separates the controller input signal into average and oscillatory content
• Oscillatory content of the signal is phase shifted to create the damping signal

• This damping signal is provided as a supplementary control signal to the Static VAR Compensator (SVC)

Controller HW Specs:
- Platform - NI-cRIO 9081 

(1.06 GHz, 16 GB)
- Output - analog output 

module NI-9264 (25 
kS/s per channel)



Experiment(s) 4: Impact on
PMU-based Passive Anti-Islanding Protection
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Signal Loss

• With the WAPOD disabled, the 0.64 Hz inter-area 
oscillation is not damped.

• WAPOD’s performance degrades as the GPS disconnection 
time for PMU-2 increases
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PMU behaviors under Time-Synch perturbations:
Do all PMUs behave similarly?
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• At t = 00:05:40, the time signal to PMUs (B-E) was disconnected. 
• All PMUs exceed 1 % TVE (0.5730 or 31.8 µs) within 24 min of the 

loss of time-sync.
• For 4-hour experiment: 

• Max angle diff. error of 3900 (21.64 ms), PMU-D, and 
• Min angle diff. error of 10.450 (0.58 ms), PMU-E.



Internal Clocks &
Undetectable Attacks

• When TSSA is launched instantly: 
• the internal oscillator takes around 10 s to re-

synchronize to the spoofed signal and during this period, 
• the phase angle computation error goes beyond 80.

• Such a TSSA is relatively easy to identify as the 
compromised PMU shows large phase angle deviations for 
a few seconds. 

• Sophisticated/Undetectable TSSA:
• Jamming the authentic GPS signals for a given time window 

and increasing a fixed delay (steps)
o Internal oscillator of the PMU will undergo smoother 

transitions to the spoofed signal and 
o Does not result in large phase angle deviations harder 

to detect
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Conclusions (1/2)

• Loss / Spoofing of time-synchronization signal results in corrupted power
system monitoring results, delayed / faulty protection activation, and
degradation of WAPOD controls.

• When the GPS signal is lost, the PMUs rely on their local oscillator to compute 
synchrophasors.

• Each PMU has a different internal oscillator and therefore results in different phase angle computation
error when its external time synchronization signal is lost.

• When subjected to a TSSA instantly, the internal oscillator of the PMUs needs
to resynchronize to the spoofed time synchronization signal which requires
additional time.
o During this period, the PMUs report a large phase angle computation error, which can result in

degradation & mal-operation of the associated monitoring, protection and control applications
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Conclusions (2/2)

To provide a quantitative metric for the TSSA’s tolerance level 
of each application, it is necessary to consider:
• Threshold settings, e.g. phase angle difference to initiate a 

trip / control action. 
o These thresholds are system dependent and are unique for 

each application. 
• Wide-Area Damping: 

o The change in system topology results in a shift in the mode’s 
frequency and damping, requiring real-time (re)tuning while

o Changes in time requires adaptive time-delay compensation, 
o Both not typically available in today’s controls.

• The maximum tolerance for each application can be 
calculated using the demonstrated RT-HIL setup and the 
proposed TSSA methodology. 
o These tolerance levels are system and application dependent 

and therefore will be different for each case. 
• Experimental methods and design tools for 

quantification are needed!
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Application Effect Significance

Phase Angle 
Monitoring

Misleading information 
resulting in false control 
actions either manually or 
automatic
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False activation of 
protection scheme leading 
to system separation

Major /
Threshold 
dependent

Oscillation 
Damping 
Control

Controller’s performance 
degradation that may 
result in negative 
damping injection into the 
system leading to loss of 
synchronism

Major /
Controller 
and System 
dependent 



Resources and Main References Related to this Talk

• Main web:
 ALSETLab: http://ALSETLab.com

• Github source code repositories:
 IRIG-B for Real-Time Simulators:
 https://github.com/ALSETLab/IRIG-

B_for_RT
 Audur: Real-Time Wide-Area Controller
 https://github.com/ALSETLab/Audur
 S3DK Toolkit for PMU applications 

implementation: 
 https://github.com/ALSETLab/S3DK
 Monitoring App:
 https://github.com/ALSETLab/S3DK-

SynchrophasorDisplay
 STRONgrid Real-Time Data Mediator:
 https://github.com/ALSETLab/S3DK-

STRONGgrid

Time-Synchronization Spoofing and Jamming:
M. S. Almas, L. Vanfretti, R. S. Singh, and G. M. Jonsdottir, "Vulnerability of Synchrophasor-based 
WAMPAC Applications’ to Time Synchronization Spoofing," in IEEE Transactions on Smart Grid , 
vol.PP, no.99, pp.1-1 doi: 10.1109/TSG.2017.2665461
M. S. Almas, and L. Vanfretti, “Impact of Time-Synchronization Signal Loss on PMU-based WAMPAC 
Applications”, IEEE PES GM 2016, July 17-21, Boston, Massachusetts, USA.
R.S. Singh, H. Hooshyar and L. Vanfretti, “Laboratory Test Set-Up for the Assessment of PMU Time 
Synchronization Requirements,” IEEE PowerTech 2015, The Netherlands, 2015.

Protection Application:
M. S. Almas and L. Vanfretti, “RT-HIL Implementation of Hybrid Synchrophasor and GOOSE-based 
Passive Islanding Schemes”, IEEE Transactions on Power Delivery, Vol. 31, No. 3, pp. 1299-1309.
M.S. Almas, Luigi Vanfretti, “A method exploiting direct communication between phasor 
measurement units for power system wide-area protection and control algorithms,” MethodsX, 
Volume 4, 2017, Pages 346-359, ISSN 2215-0161.

Control Application:
G.M. Jonsdottir, M.S. Almas, M. Baudette, M.P. Palsson and L. Vanfretti, “RT-HIL Hardware Prototyping of 
Synchrophasor-and-Active-Load-Based Oscillation Damping Controllers,” IEEE PES General Meeting 
2016, Boston, MA, USA.
G.M. Jonsdottir, M.S. Almas, M. Baudette, L. Vanfretti, and M.P. Palsson, "RT-SIL Performance Analysis of 
Synchrophasor-and-Active Load-Based Power System Damping Controllers," IEEE PES GM 2015.
E. Rebello, L. Vanfretti, and M.S. Almas, “Experimental Framework for Testing Synchrophasor-Based 
Damping Control Systems,” 2015 IEEE 15th International Conference on Environment and Electrical 
Engineering, June 10-13, 2015, Rome.
E. Rebello, L. Vanfretti and M.S. Almas, “Software Architecture Development and Implementation of a 
Synchrophasor-Based Real-Time Oscillation Damping Control System,” IEEE PowerTech 2015, The 
Netherlands, 2015.

Monitoring Application:
M.S. Almas, M. Baudette, L. Vanfretti, S. Løvlund and J.O. Gjerde, “Synchrophasor Network, 
Laboratory and Software Applications Developed in the STRONg2rid Project”, IEEE PES GM 2014, 
Washington DC, USA 22

http://alsetlab.com/
https://github.com/ALSETLab/IRIG-B_for_RT
https://github.com/ALSETLab/Audur
https://github.com/ALSETLab/S3DK
https://github.com/ALSETLab/S3DK-SynchrophasorDisplay
https://github.com/ALSETLab/S3DK-STRONGgrid


Future Work

• We have now started to build a 
new real-time hardware-in-the-loop
simulation lab at RPI for PMU R&D

• ALSETLab is being developed to 
solve real-world grid problems!
o We want to work with you!

• Lab Development Status:
o Laboratory space preparation 
6 work stations

o Equipment being shipped.
o Opal-RT Simulator in production.
o In operation ~ Summer ’18.

Analysis Lab for Synchrophasor & 
Electrical Energy Technology

Racks with Commercial-Grade PMUs, 
Protective Relays, etc.

PMU and Controls Prototype 
Development Systems

Real-Time 
Simulators



ALSETLab
Needs your help!

& PMU/DER/Grid

Follow our donors example!
• Platinum Contributors:

• Gold:

• Silver:

Want to help?
or know someone that has $$$?
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