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Research Areas:

- Modeling and Simulation of cyber-physical systems in general, specializing in power systems; real-time simulation, multi-domain simulation, co-simulation.
- Synchronized phasor measurement technologies and PMU Apps for monitoring and control

- Application of System Identification Methods to cyber-physical power system modeling, monitoring and control.

- Stability, Control and Security of cyber-physical systems, specializing in power systems.

- Application of computer languages and software technologies for cyber-physical system modeling and simulation - e.g. UML, SysML, Modelica and FMI.
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Outline

 Motivation and Goal
(« Needs

« PMU technology for real-time ADN
monitoring

» Tooling for Real-Time Monitoring App
Prototyping:
« The STRONGgrid Library: A IEEE C37.118.2
client for synchrophasor data mediation

« The S3DK (Smart grid Synchrophasor
Software Development Toolkit)

 Modeling for Real-Time Monitoring Apps
« Development of “active” grid model
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Monitoring Applications
App. 1.

« Steady State Model Synthesis
App. 2.

« Distribution Feeder Dynamic Line Rating
App. 3:

« Decoupled voltage stability analysis
App. 4.

« Distributed mode estimation

Conclusions and Further Work




Motivation

 Utilities and grid operators stressed
the need for real-time information on
distributed energy resources to a
Federal Energy Regulatory
Commission panel in Washington,
D.C. on Wednesday (04/11/2018)

« “The worst thing that could happen for
distribution companies is to not have
visibility on...that distributed energy
resource,”

« “We need to know where it is, the size of
it, and how it’s being operated on a real-
time basis.”

« “Communication today with DER s really
low-tech. It's phone and it's emails,”

g‘:u R EN l https:.//www.greentechmedia.com/articles/read/utilities-grid-operators-tell-ferc-they-need-real-time-data-ders#gs.gDMmLrc

Utilities, Grid Operators Tell FERC They
Need Real-Time Data to Better Manage
DERs

It's unclear how federal regulators will tackle the problem.

LACEWJOHNSON APRIL 12, 2018

This looks
like a job for
PMU
technology!

4


https://www.greentechmedia.com/articles/read/utilities-grid-operators-tell-ferc-they-need-real-time-data-ders#gs.gDMmLrc

Motivation

Synchrophasor measurement units (or
PMUs), provide time-synchronized -
measurements that can be networked into a | &
synchrophasor system:
- This would allow for real-time measurement
data exchange between different asset

owners and grid operators, using a broadly
adopted standard for data transfer.

- Higher resolution than traditional
measurement systems used at rs e
SCADA/DMS/EMS: 30,50,60,120 Hz. * T synchronization ™

With increased penetration of renewable Voltage Magnitude MW
energy sources, it will be necessary to T R
Increase observability between T&D grids: .|
« Grid dynamics becoming are becoming more 1.
active in the system. Lo}

- Example: WT curtailed due to emerging sub-
synchronous control interaction dynamics =
that compromise grid operation. T
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Need for “Interaction” between
Active Distribution Networks (ADN) and Transmission Network Operators (TNOSs)

Need for Interaction How to Derive Information?
: : PMU Applications
View from the ADN View from TNOs Extract operational information to serve as as

“enablers” for interaction between:

v

A

ADNs

o Start with adding one or few PMUs in the ADN

As distribution networks become more “active’: . First step towards “information exchange” between

« Operational security of the overall grid requires ADNs ADNs and TNOs
and TNs to interact tightly. «  Extract information from PMU data across
Interaction begins with “Information Exchange” operational boundaries.

Information can only be derived from measurements or

models!

Today, DN and TN share very little information in operations. Potential

« Litter (or non) measurement data exchanged, and common
without required technical features (time-synch, view
sampling rate, etc.)

 Outdated/limited/unavailable models or equivalents




Goal

« Itis possible to develop PMU-based
applications to synthesize real-time
Information from PMU data to provide:

« Real-time monitoring, control and protection
across multiple-voltage levels, and operational
boundaries of different actors = exchanging
real-time measurements and information
between transmission, distribution, DER
owners, prosumers.

« Real-time operation - track, analyze, make
a diagnosis and to help taking preventive /
corrective actions.

« Planning = learn from measurement data
and synthesized information, so to develop
grid enhancements that increase hosting
capacity.

 The architecture of HW/SW required for this
type of applications needs to be understood.

« Two examples: one partially distributed, and >
one partially centralized application.
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PMU App Development Approach and Areas Covered in this Presentation

Frequency Alarms
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STRONGgrid Library
A PMU Real-Time Data Mediator a.k.a. “DLL"

e Alibrary in C++ was implemented with an architecture design that
provides modularity and re-use.

StrongridBase | [StrongridClient-| |StrongridDLL StrongridDLLStress-
Library —=»fBase Library —=»|Library Sl Gl Test Executable
C37.118.2 Protocol PDC Client API Export Test Application

e |t provides C++ methods that can be accessed from any environment
and a dedicated API for LabView:

Listing 1: Source code snippets showing some of the Strongrid DLL API methods

LHDVl?VV int connectPdc( char *ipAddress, int port, int32_t pdeld, int32_t#*
_ Specific pseudoPdcId);
Methods int disconnectPdc( int32_t pseudoPdcId);
— IEEE S3DK int readHeaderData( int32_t timeoutMs, int32_t pseudoPdcId);
PMU / PDC TCPP A {LHBV|EW} int readConfiguration( int32_t timeoutMs, int32_t pseudoPdcId);
Server C37.118.2 P int startDataStream( int32_t pseudoPdcId);
. int stopDataStream( int32_t pseudoPdcId);
{IEEECST"I‘lB'E} Client | Other int readNextFrame( int32_t timeoutMs, int32_t pseudoPdcId);
Environments int getPdcConfig( pdcConfiguration* pdcCfg, int32_t pseudoPdcId);
— int getPmuConfiguration( pmuConfig* pmuconf, int32_t pseudoPdcId, int32_t
2 mulndex);
STRONgnd DLL Real-ﬁmg PMU int gpethcRealData( pdcDataFrame* rd, int32_t pseudoPdcId);
Applications int getPmuRealData( pmuDataFrame#* rd, PmuStatus* status, int32_t pseudoPdcld,

int32_t pmulndex);
int getHeaderMsg( char* msg, int maxMsglength, int32_t pseudoPdcId);

* Includes multi-threading, and provisions to expand for other protocols.
e https://github.com/ALSETLab/S3DK-STRONGgrid
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Tooling for Implementation
of Real-Time PMU Apps

Getit

(0]

¢ Real-Time PMU Data VA

o S3DK: | https://github.com/ALSETLab/S3DK

o Open source “toolbox” for PMU
application implementation in LabView.

L LabVIEW2012 PMU Reference Library

Example PDC Reader.vi
Skaknt Shatn .t Shatnokt
D = ] READEF;
il Error in (no error) error out
Templates Examples i i
P P Use this termnplate to build a producer/consumer
Sratneti Stakn kil . .
TIME design pattern with events to produce queue
(Xjn @ iterns. Use this design pattern instead of the User
Time Write Interface Event Handler pattern for user interfaces
when you want to execute code asynchronously in
Sramne Erana response to an event without slowing the user
o interface responsiveness,
Buffer and (... Ltilities

PMU Reference Library.lvlib:PMU Recorder Light.lvlib:PRL Read Queue.vi

Timestamp Values
timeout in ms (3) Phasor Values
i Analog Values

5 Digital Values
L Haz Data?

ECURENT

Following RT data acquisition, all

methods go through scripts
implemented within LabVIEW

e
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...........
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" LabVIEW2013 PMU Reference Library

Tratnoth Eratnotl Example PDIC Reader.vi
I.I -2k Fad-
Sy Etpltncu
— — ) FREADEFR
Temnplates Exarnples error in (no error) error out
Skakne Skakne - . N
— %‘ Use this template to build a producer/consumer
IL:] design pattern with events to produce queue
i i iterns. Use this design pattern instead of the User
Time Write -
Interface Event Handler pattern for user interfaces
S - when you want to execute code as;,rnchr-:unl:uusl}r in
O JL response to an event without slowing the user
— — interface responsiveness.
Buffer and Q... Ltilities
L Examples PMU Reference Library.lvlib:PMU Recorder Light.lvlib:PRL Read Queue.vi
Skatnott f;utnott Etatnott] Etatnott] E:t/qtnou Skatnott 'i""""""' Timestamp Values
FDC x FREQ. FDC x FREQ. - -
READER: s £ READER: s A timeout in ms (3) Phaszor Values
Ay : LA | e - 3= Analog Values
Example PD... Self Starting ... Simple Frequ... Example PD.. Self Starting ... Simple Frequ... = Digital Values

“ Buffer and Queues

b Has Data?

T~ FrU 1 FrHU T Fru
] m] k; b
Statnett PM... PEL Remote PRL PMU 5ta... PRL Channel.. PRL Channel.. PEL Read Qu... PREL Read Bu... PRL Read Bu...
L Utilities
T T P 1 pru . H H H
e EGL @b? @bi‘ ETiz' @Q}
Calculate An... Get PRL Acc... PRLARR Cal.. PREL BUFFER .. PRLBUFFER... PRLBUFFER .. PRLBUFFER.. PRLBUFFER.. PRLBUFFER.. PRL BUFFER.. PREL Checkf..
17 FHu 17 PHU T PHU T PHU T FHU H H H H 17 Frau | 17 Frau |
3 3 3 3 i o &S e " .
: h_u n_u = Calculate Angle and Amplitudes.vi
PREL DW Che... PRELDW Che... PRL DW Clea... PEL DW Clea... PRLInsertEl.. PRLQUEUE.. PRLQUEUE.. PRL QueueR.. PRL SIGMA
1~ FHU 1~ FrHU 1 FHU 1 FHU Parameters
2 i 'y Q. B w5k, Voltage Phasors Tt Voltage Amplitude [kV]
PRL STR Con... PRLSTR Con... PRLSTR Con.. PRLSTR Get.. PRLTSClip.. PRLTS GetR.. PRLTSRoun.. PRLTSWaiter PRLUTILC Current Phasors e Current Amplitude [A]
17 FHU 1 | 1: 1 Power [M‘ll.ﬂlr]
Reactive Power [MYAR]
PRL UTIL Co... PRL UTIL Get... PRL UTIL Get... PRL UTIL Spli...

@cuRENT

S$3DK’s LabVIEW

Function Library/Toolbox/Pallete (aka PRL)
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Modeling for
Real-Time Apps.:

Rated Voltage| No. of buses

Number of branches

HV 220kV 6

MV A3 Roy Billinton
LV (XYVA  Transmission

@ECcuRENT

0.4 kV Test System

7 three-phase

ee-phase, 8 single-phase

39 three-phase

l |IEEE 34

bus test

feeder

1000

Nominal L-L voltage (kV)
6.6

Solar irradiation g

[0 800 1000 800

Nominal power (V.

5e6

Number of PV systems
6

Irradiation time s
(0 100 200 300 4

Nominal frequen:

50

Nominal voltage | Voltage levels [Vmin2 Vmil

36E3/sqrt(3) [0.50.88 1.1 1.3]

Rated feeder currg Trip times [V<Vmin2 Vmin:

200 [0.24 4.8 4.8 0.24]

Initial tap number

Frequency levels [fmin fmal
[49.3 50.5]

Trip times [f<fmin fmax<f]
[0.24 0.24]

M 9E

Single-Phase Recloser

Nominal inverter rating (kVA)
150

iunity Energy Storage
Energy System (CES) (mask)

sin. variation

O I T

Minimum SoC (%)
20

Maximum SoC (%)
90

[0.50.88 1.1 1.3]

[0.24 4.8 4.8 0.24]

[49.3 50.5]

[0.24 0.24]

~—

——
Voltage levels [Vmin2 Vminl Vmaxi Vmax2] (pu)
Trip times [V<Vmin2 Vmin2<V<vminl Vmax1<v<vmax2 Vmax2<V] (s)
Frequency levels [fmin fmax] (Hz)

Trip times [f<fmin fmax<f] (s)

of 3 single-phase units




Model Setup for Real-Time Simulation:

Get it on Github! https://github.com/ALSETLab/ADN-RT-EMTP-Model

The model is included as an ARTEMIS demo
in Opal-RT’s RT-Lab:

https://www.opal-rt.com/resource-
center/demo/?resource=L.00143 0095

Resource Center

2016-10-11

Demo Model | Power Systems | Hardware-In-the-Loop (HIL)

Active Distribution Grid with High
Penetration of Distributed Generation
using SSN

Model also available for off-line analysis
using the EMTP-RV software!

EMTP-RV

The reference for power systems transients

Runs on 4 cores.

Uses the State
Space-Nod

time-ste 100
9 P 9]

adyg
\ SM_HVGrid

HV Grid 220kV MV Grid 36kV LV Grid 6.6kV / Residential LV 0.4kV
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App. 1: Steady-State Model Synthesis

e Assumptions:

« PMU measurements are available between
two (or more) buses in a distribution network

« They measure all three-phase voltage and
current phasors.

» Athree phase steady state equivalent
model can be synthesized for the portion
of the distribution network that is located
between the installed PMUs.

 The model’'s parameters are obtained by
writing KVL equations across the model
branches and equate V,'s and |;'s to PMU
measurements.

ECurRENT
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RT Testing using ADN Model

Event 1: A lateral MV feeder disconnects at Node 834 att =40 s
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disconnects at Node 854 att =70 s.
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Field Testing @ EPFL Campus, Switzerland w. Prof. Mario Paolone’s Group

» Test Site and Conditions:

o Actual consumed power from each building is measured by a PMU.
o HV side of transformer feeding the building also measured by a PMU — includes rooftop PV impact.

Test Site

¢ PMU locations

— Twisted Pairs

— Optical link
A 1 Loads

<~ Transformers

B PV Panels

ECURENT

—— Bus

<«<— Load

PV panels

t——— Zero-injection bus

Transmission line
(0D Power transformer

) Voltage meas.

(D Current meas.

&) PMU

The reduced steady state

equivalent model

ELL ELG

311 m
PMU 2
72 m RS ——
(o
4 3
1260 kVA 2260 kVA 1260 kVA 1260 kVAA
| ¢ | ¢ [
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Field Test Results
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The SSMS method reproduces the
active power accurately, which
shows the validity of the SSMS
method on a real active
distribution network model using
real PMU data.

True

Reproduced

55
Average P mistmatch (W): 59.263507
Avg percentage Change = 0.160519
«10% Active Power at PMU2
d True
Reproduced
15 20 25 30 35 40 45 50 55

Average P mistmatch (W): 0.276509
Avg Percentage Change = 0.001076




Temperature dependent system Sag dependent system

Dynamic Line Rating (DLR) Systems e

for Aerial Distribution Feeders

« Based on real time measurements from different types
of techniques, and broadly used in transmission.

« Technigues and Physical Principle:

o Temperature dependent systems - Thermal Principle-Based DLR

o Tension monitoring systems
o Sag dependent systems

» During favorable conditions line carf be loaded more without exceeding
maximum allowed conductor temperature

 DLR System for aerial distribution systems:

0

0

BCURENT

Computations

Mechanical Principle-Based DLR
Computations

Why? Manage loading in bi-directional flow feeders.

Low-cost GPS-based positioning is becoming available, and also sag sensors
based on this technology.

Weather data => provided by a close-by weather station.
Line loading => provided by PMU!
Real-time sag => provided by a GPS-based measurement device.

fech Talk | Transportation | Self-Driving

Cheap Centimeter-Precision GPS For
Cars, Drones, Virtual Reality

g e aounooaon
Posted 6 May 2015 | 20:00 GMT




h : . ] Kalman filter is used to merge the conductor temperature
En ancing conductor temperature estimates: estimates from both methods (thermal and mechanical

Use both principles = Apply Kalman Filtering principles combined)

Final temperature, and ampacity computed from
enhanced conductor temperature estimate and IEEE/738

Conductor
data from datasheet

Real-time data ! Kalman Filter Real-time ampacity calculation

Real-time measurement
——of Sag from GPS receiver
(~1 sample/min)

State Change Temperature  (~1 sample/min) |
i (Kalman prediction) Ambient data

from weather station
(~1 sample/10 min)

(~1 sample/5 sec)

or initialization IEEE 738
Conductor data_b

~ from datasheet

v

Real-time line loading i

——(current phasors from PMU) o ‘
(~50 sample/sec) Real-time ampacity
(~1 sample/ 5 sec)

Ambient data from Temperature
weather station IEEE 738 —(Kalman prediction) S Contce Tamporstr |
(1sample/10min) | (~1 sample/5 sec) e i

—Conductor data from datasheet—

Kalman correction
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Rea-Time HIL Simulation Testing
PMU Data, Weather data from weather station, sag data (pre-calculated)

Opal-RT
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Reference Grid
E

¥
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Field Data Analysis using the Proposed Method

Impact of different variables from real recorded sensor data, and correlation analysis
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Comparison with Proprietary Solutions

Kalman Filtering vs respect of two commercial solutions

http://www.sciencedirect.com/science/article/pii/S2352467717300528

Kalman filter helps in reducing variance of output!
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App. 3: Decoupled Voltage Stability Analysis of TNs and ADNs
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App. 3: Methodology

» Three different Power vs. Voltage (or PV) curves are calculated from the three models.

The voltage stability and instability indices are calculated from these models:
o Can help to pin-point the contributions of two networks on the overall system voltage stability!
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App. 3: Real-Time HIL Testing

Real-time simulations results:

o Observation point at LV network, i.e. PV curves seen
from PMU22:

Cases:
A. All distributed generation inside MV network is
disconnected
B. All distributed generation inside MV network is
connected
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App. 4: Distributed Mode Estimation

Real-Time Oscillation Detection and Monitoring in Local Active Distribution Networks
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App. 4. Mode Estimation Algorithm(s) Implemented
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App. 4: Test Scenario

Static load

Dynamic load

Voltage regulator

Wind farm

PV farm

Residential PV system
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Circuit breaker

FOP
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15

714

4 PMUs placed at nodes 101, 814, 840 and 888
(PMU1, PMU2, PMU3 and PMU4 respectively).

Inter-Area oscillation (mode) present
throughout the network. A low-level, local
oscillation was forced at node 888 in the LV
section.

In decentralized architecture, Synchrophasor
data is processed separately for each PMU.
Each processor give mode-estimates based
on individual PMU data.

Voltage Magnitude and Voltage Angle
difference Signals were used to identify the
modes.

Mode Frequency

Mode 1 (inter-area) 0.41 Hz

Mode 2 (forced

1.70 Hz
local)

29



App. 4: RT-HIL Testing under Ambient Conditions
Centralized vs decentralized architecture in local mode visibility
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App. 4. Statistical Analysis

Forced local oscillatory mode detectable in

" decentralized architecture
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Conclusions

* The increase of intermittent renewable sources bring technical challenges for network operation.

e Synchrophasor measurements have a great potential to support the technical operation of distribution
networks with DER.
* Applications can play an important role of synthesizing (extracting) key information about the operation of the grid.

e TSOs-to-DSOs interaction in operations through PMU Apps.

o DSOs can enhance the way they operate by having better knowledge of
the system’s performance in near real-time

o TSOs can gain visibility of the phenomena at lower voltage levels, and device
actions

o Real-time automatic control and protection is the next big step
= Existing architecture, automation and system level technology needs (urgently) to mature...

o Interoperability and Standardization:

= Need to develop and support a truly open market of products and services — an efficient electricity market requires
and efficient technological market 2 we need to create competition!

= QOpen standards and open source software with the standard implementation would help establishing such
markets by providing the basic building blocks for a quantitative and technical comparison.
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Future Work c L T @LSET Lab

* We have now started to build a
new real-time hardware-in-the-loop ] T

simulation lab at RPI for PMU R&D IR Racks with Commercial-Grade PMU,
1% E"-‘“‘i 1 Protective Relays, etc.

« ALSETLab is being developed to
solve real-world grid problems!

o We want to work with you!

Cabinet (Front view)

Real-Time
Simulators

« Lab Development Status:
o Laboratory space preparation
= 6 work stations
o Equipment being shipped.
o Opal-RT Simulator in production.
o In operation ~ Summer '18.

40U Standard Cabinet
(1U = 1.75inch)

PMU and Controls Prototype
Development Systems

ECURENT



ALSETLab
Needs your help!

Want to he@ DONATE
or know someone that has $$$?

g! Follow our donors example!

o Platlnum Contributors:

DOI‘I‘I[I‘Ilon - SCHWEITZER
ENGINEERING
nergy S E . LABORATORIES
e Gold:
GE Global Research

« Silver: @ OGitHUb

{ thanks for
your support. *=
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