Iterative-Interpolated DFT for Synchrophasor Estimation: a Single Algorithm for P and M-class compliant PMUs

École Polytechnique Fédérale de Lausanne (EPFL) Distributed Electrical Systems Laboratory (DESL) Asja Derviškadić, Paolo Romano and Mario Paolone

Outline

- Motivations
- Problem statement
- The Interpolated DFT for \cos^{α} windows
- The iterative Interpolated DFT
- Performance assessment
- Computational complexity

Motivations

P and M-class compliant PMU (IEEE Std. C37.118)

- The IEEE Std. C37.118 defines two performance classes to which PMUs must comply with:
 - ∠
 N

 P-class
 M-class

 Protection → Latency
 Measurement → Accuracy
- What if we had a single PMU capable of satisfying both the P and M-class PMU requirements at the same time?

$\mathbf{\Psi}$

- Lower cost: the same PMU simultaneously supplies monitoring and protection functionalities
- Higher measurement reliability: protection and control applications are not degraded by disturbances (interharmonics)

Motivations

The Out-of-band Interference (OOBI) test

		P-class	M-class
	Signal Frequency	\bigcirc	\bigcirc
Static	Harmonic Distortion	\bigcirc	\bigcirc
	Out-Of-Band Interference	8	\bigcirc
D	Measurement Bandwidth	\bigcirc	\bigcirc
Dynamic -	Frequency Ramp	\bigcirc	\bigcirc
	Amplitude Phase Step	Ø	\bigcirc

PMU capability to reject interharmonics close to the main tone:

- $A_i = 10\% \cdot A_0$
- $f_i \in [10 \text{ Hz}, f_N F_R/2] \cup [f_n + F_R/2, 2 \cdot f_n]$
- $f_0/f_i \notin \mathbb{N}$
- *f_N* = 50 Hz (nominal frequency)
 F_R = 50 fps (PMU reporting rate)
 *f*₀ = [47.5, 50, 52.5] Hz
 f_i = [10: 25 75: 100] Hz

Problem statement

DFT-based Synchrophasor Estimation (SE) Algorithms

Find the frequency f_0 , amplitude A_0 and phase φ_0 of the fundamental tone of a signal

Problem statement

The Out-of-band Interference (OOBI) test

Find the frequency f_0 , amplitude A_0 and phase φ_0 of the **fundamental tone** of a signal characterized by two tones, a fundamental and an interharominc tone, both of unknown frequency amplitude and phase

k

The Interpolated DFT (IpDFT)

IpDFT problem solution for \cos^{α} window functions

The IpDFT is a technique to extract the parameters f_0 , A_0 and φ_0 of a sinusoidal waveform by interpolating the highest DFT bins of the signal spectrum. It mitigates the effects of **incoherent sampling** $(f_0/\Delta f \notin \mathbb{N})$:

Applying special windowing functions -> reduce spectral leakage

The Interpolated DFT (IpDFT)

IpDFT problem solution for \cos^{α} window functions

The IpDFT is a technique to extract the parameters f_0 , A_0 and φ_0 of a sinusoidal waveform by interpolating the highest DFT bins of the signal spectrum. It mitigates the effects of **incoherent sampling** $(f_0/\Delta f \notin \mathbb{N})$:

$$\delta = a \cdot \varepsilon \frac{|X(k_m + \varepsilon)| - |X(k_m - \varepsilon)|}{|X(k_m - \varepsilon)| + 2|X(k_m)| + |X(k_m + \varepsilon)|}, \ a = 1.5 \cos, a = 2 \text{ hann}$$

The Interpolated DFT (IpDFT)

IpDFT weaknesses

Assumptions behind the IpDFT	Possible solutions		
The input signal is characterized by time-invariant parameters	Window lengths containing few periods of a signal at the rated power system frequency		
The sampling rate is higher than the highest signal's spectral component	Sampling rate <i>F_s</i> in the order of tens of kHz		
The DFT bins used to perform the interpolation are only generated by the positive image of the tone under analysis	 Enhanced IpDFT (e-IpDFT) → Iterative compensation of the spectral interference produced by the main tone negative image Iterative IpDFT (i-IpDFT) → Iterative compensation of the spectral interference produced by the nearby tones 		

The enhanced-lpDFT (e-lpDFT)

Algorithm formulation

The enhanced-IpDFT (e-IpDFT)

The Out-Of-Band Interference test

The iterative-IpDFT (i-IpDFT)

Algorithm formulation

The iterative-lpDFT (i-lpDFT)

On the tuning of the number of iterations P and Q

P → # iterations compensation negative image of the tone Q → # iterations overall procedure

e-lpDFT \rightarrow $f_0 = 47.5$ Hz **i-IpDFT** \rightarrow $f_0 = 47.5$ Hz, $f_i = 20$ Hz δE = Error in estimating the IpDFT correction term δ hann - COS 10^{-2} 10^{0} 10⁻³ 10⁻² -Q = 16₩ 10⁻⁴ δE P = 210⁻⁴ Q = 28 10^{-5} 10⁻⁶ 10⁻⁶ 2 3 5 10 15 20 25 30 35 1 0 0 Ρ Q

The iterative-lpDFT (i-lpDFT)

On the tuning of the threshold λ

$$E_n = \frac{E[X(k) - \hat{X}_0^0(k)]}{E[X(k)]} = \frac{\sum_{k=0}^K |X(k) - \hat{X}_0^0(k)|^2}{\sum_{k=0}^K |X(k)|^2} > \lambda$$

The iterative-lpDFT (i-lpDFT) On the tuning of the threshold λ

i-IpDFT Parameters

Parameters	Variable	Value	
Nominal system frequency	f_0	50 Hz	
Window length	T	$3 \cdot T_0 = 60 \text{ ms}$	
Sampling rate	F_S	50 kHz	
PMU reporting rate	F_R	50 fps	
# DFT bins	K	11	
IpDFT interpolation points		3-points	
# iterations	Р	2	
# iterations	Q	16 (cos) 28 (Hann)	
Noise		80 dB	

Static conditions – Signal Frequency

Static conditions – Harmonic Distortion

Static conditions – OOBI

Dynamic conditions – Amplitude Modulation

Dynamic conditions – Phase Modulation

Dynamic conditions – Frequency Ramp (positive)

Dynamic conditions – Amplitude Step (positive)

Dynamic conditions – Phase Step (positive)

Computational Complexity

Implementation on National Instruments Compact-Rio

- e-lpDFT → 20 μs [3]
- i-IpDFT \rightarrow 2 · Q · 20 µs \rightarrow 0.64 ms cos and 1.12 ms hann
- Compatible with the 10 ms time budget @ 50 fps
- Feasibility of the i-IpDFT technique implementation on an FPGA-based embedded device

1.	$V(h) = \nabla \nabla \nabla (\pi(x))$		i-IpDFT Variable	Value
1:	$\begin{array}{l} \Lambda(\kappa) = \mathrm{DFI}(x(n)) \\ \widehat{f0} \widehat{f0} \widehat{c0} \end{array} $		K	11
2:	$\{J_0, A_0, \varphi_0\} _{P} = e^{-1} \text{puril}(\Lambda(k))$		P	2
3:	$X_0^0(k) = \mathrm{wf}(\widehat{f}_0^0, \widehat{A}_0^0, \widehat{\varphi}_0^0) + \mathrm{wf}(-\widehat{f}_0^0, \widehat{A}_0^0, -\widehat{\varphi}_0^0)$		Q	16 (cos), 28 (Hann)
4: 5.	if $\sum X(k) - \hat{X}_0^0(k) ^2 > \lambda \cdot \sum X(k) ^2$ for $a = 1 \rightarrow O$	Function	$+ - \times$	$\div exp sin$
<i>5</i> . 6:	$\{\widehat{f}_{i}^{q}, \widehat{A}_{i}^{q}, \widehat{\varphi}_{i}^{q}\} _{P} = e - \operatorname{IpDFT}[X(k) - \widehat{X}_{0}^{q-1}(k)]$	IpDFT	14	3
_	$ \widehat{\mathbf{V}}_{q}^{q}(1) = \widehat{\mathbf{V}$	wf (cos)	18K	11K
7:	$X_{i}(k) = wI(f_{i}, A_{i}, \varphi_{i}) + wI(-f_{i}, A_{i}, -\varphi_{i})$	wf (Hann)	23K	16K
8:	$\{\widehat{f}_0^q, \widehat{A}_0^q, \widehat{\varphi}_0^q\} _P = \texttt{e-IpDFT}[X(k) - \widehat{X}_i^q(k)]$	e-IpDFT	$(P+1) \cdot \text{IpDFT} + P \cdot \text{wf} + KP$	$(P+1) \cdot \texttt{IpDFT} + P \cdot \texttt{wf}$
9:	$\widehat{X}_0^q(k) = \mathrm{wf}(\widehat{f}_0^q, \widehat{A}_0^q, \widehat{\varphi}_0^q) + \mathrm{wf}(-\widehat{f}_0^q, \widehat{A}_0^q, -\widehat{\varphi}_0^q)$	Alg. II	$+ - \times$	$\div exp sin$
10:	end for	line 2	0-IDDET	O-IDDET
11:	else	line 3	$K \pm 2$ wf	
10	hual	line 4	$K + 2 \cdot W $	2.001
12:	break	The 4	3K - 2	-
13:	end if	line 6, 8 line 7, 9	$\begin{array}{c} Q \cdot e^{-1} \text{pDFT} + K \\ Q \cdot (K + 2 \cdot \text{wf}) \end{array}$	$\begin{array}{c} Q \cdot ext{e-lpDFT} \\ Q \cdot (2 \cdot ext{wf}) \end{array}$

Conclusions & Future Works

- IpDFT-based SE algorithm for P and M-class compliant PMUs
- First IpDFT-based synchrophasor estimation technique resilient to OOBI
- During OOBI test the maximum TVE is 0,1% (being 1,3% the maximum allowed limit) and the maximum FE is 4 mHz (being 10 mHz the maximum allowed limit)
- Patent submitted to PCT
- Implementation of the i-IpDFT in an embedded device (National Instruments Compact-Rio embedded control and acquisition system)

Iterative-Interpolated DFT for Synchrophasor Estimation: a Single Algorithm for P and M-class compliant PMUs

École Polytechnique Fédérale de Lausanne (EPFL) Distributed Electrical Systems Laboratory (DESL) Asja Derviškadić, Paolo Romano and Mario Paolone

References

- 1. A. Derviškadić, P. Romano and M. Paolone, "Iterative-interpolated DFT for Synchrophasor Estimation: a Single Algorithm for P and Mclass compliant PMUs," *IEEE Transactions on Instrumentation and Measurement.*
- 2. P. Romano and M. Paolone, "Enhanced interpolated-DFT for synchrophasor estimation in FPGAs: Theory, implementation, and validation of a PMU prototype," *IEEE Transactions on Instrumentation and Measurement*, vol. 63, no. 12, pp. 2824–2836, Dec 2014.
- 3. P. Romano and M. Paolone, "An enhanced interpolated-modulated sliding DFT for high reporting rate PMUs," in 2014 IEEE International Workshop on Applied Measurements for Power Systems Proceedings (AMPS), Sept 2014, pp. 1–6.