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€ PMU-based decision
making tools require
accurate PMU data for
reliable analysis.

€ PMU data has higher
sampling rate and
accuracy requirement.

€ Typical PMU bad data
ratio in California ISO
ranges from 10% to 17%
(in 2011) [5].

Critical Needs
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Urgent need to develop
scalable, real-time methods
to monitor and improve
PMU data quality.

Conventional bad data
detection algorithms are
rendered ineffective, novel
algorithms are needed.
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Current Work for PMU Bad Data Detection

e

Model-Based Approach P

0 PMU-based state estimator [2].

0 Kalman-filter-based approach [3].

O Require system parameter and topology information.
0 Require converged state estimation results.

Data-Driven Approach _* \

O Low-rank matrix factorization for PMU bad data detection [4].
[0 Pre-defined logics & thresholds for bad data detection [1].

[0 Matrix factorization involves high computational burden.

0 Robustness of pre-defined logics under eventful conditions.
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Overview of Proposed Work

Problem Formulation
O Study spatio-temporal correlations among good / eventful / bad PMU data.

O Formulate bad PMU data as spatio-temporal outliers among other data.

O Apply density-based outlier detection technique to detect bad PMU data.
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Detect Various Types of Bad Data:
Key Advantages:

O High communication noise.
O Online bad data detection.

Missing data (communication loss).
O Data-driven algorithm.
O Operate under both normal and

fault-on operating conditions. Un-updated data.

False data injection.
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0
O Data spikes (gross error / GPS error).
O
O
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Good Data vs Eventful Data vs Bad Data
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Good Data vs Eventful Data vs Bad Data
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Features of Good / Eventful / Bad Data

Criteria: Normal Data riteria; Bad Data
VS Bad / Eventful Data VS Eventful Data

€ For a particular PMU curve, its bad data

@ For a particular PMU segment has weak spatial correlation with
curve, its bad data corresponding data segments of its
segment and eventful neighboring PMU curves.

data segment have weak
temporal correlation with
its normal data segment.

€ Its eventful data segment has strong
spatial correlation with corresponding
data segments of its neighboring PMU
curves.
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Spatio-Temporal
Outlier

PMU Bad Data:

. Synchrophasor Data under Low—Quality Condition
- Synchrophasor Data under Fault—On Condition
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Online Detection of Bad PMU Data

Spatio-Temporal Correlation
Metrics (Distance Function)

» For high-variance bad data:

fH(L.?) =9

v' High-variance bad data: data
, spikes, data loss, high noise,
'I false data injections, etc.
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= For low-variance bad data:
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v' Low-variance bad data:
un-updated data, etc.

Density-Based
Local Outlier Detection

= | ocal Reachability Density:

(rd)pinpis(p) =
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= L ocal Outlier Factor:
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= Bad Data Detection:
v' LOF(p) >> 1: p contains bad data.

v' LOF(p) = 1: p contains good data only.
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Online Detection of Bad PMU Data
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Numerical Results — Data Spikes

Synchrophasor Measurements with Spikes
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13 real-world PMU current magnitude data
curves.

PMU No. 1, 5, 7, 13 contain un-updated data
lasting from 1s to 1.2s.

Line tripping fault is presented around 4s.

Numerical Results Description

All the 4 bad data segments are detected.
System event does not cause false alarms.
Detection delay is less than 0.18s.

Computation time for each data window is
0.0115s.
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Conclusions

® Conclusions
An approach for PMU bad data detection is proposed:

O Itis purely data-driven, without involving any knowledge on network
parameters or topology, which avoids the impact of incorrect
parameter/topology information on the identification results.

It encounters no convergence issues and has fast computation
performance, which is desirable for online application.

It is suitable for identifying bad data in PMU outputs under both normal
and eventful operating conditions.
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