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Motivation of This Work

3

Current Practice Critical Needs

Urgent need to develop 

scalable, real-time methods 

to monitor and improve 

PMU data quality.

Conventional bad data 

detection algorithms are 

rendered ineffective, novel 

algorithms are needed.

 PMU-based decision 

making tools require 

accurate PMU data for 

reliable analysis.

 PMU data has higher 

sampling rate and 

accuracy requirement.

 Typical PMU bad data 

ratio in California ISO 

ranges from 10% to 17% 

(in 2011) [5].
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Current Work for PMU Bad Data Detection

 PMU-based state estimator [2].

 Kalman-filter-based approach [3].

 Require system parameter and topology information.

 Require converged state estimation results.

 Low-rank matrix factorization for PMU bad data detection [4].

 Pre-defined logics & thresholds for bad data detection [1].

Matrix factorization involves high computational burden.

 Robustness of pre-defined logics under eventful conditions.
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Overview of Proposed Work

Online PMU Bad Data Detection Algorithm

Problem Formulation

 Study spatio-temporal correlations among good / eventful / bad PMU data.

 Formulate bad PMU data as spatio-temporal outliers among other data.

 Apply density-based outlier detection technique to detect bad PMU data.
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Good Data vs Eventful Data vs Bad Data

Phase Angle Measured by A Western System PMU for A Recent Brake Test Event
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Good Data vs Eventful Data vs Bad Data
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Features of Good / Eventful / Bad Data

Criteria: Normal Data 

VS Bad / Eventful Data

 For a particular PMU 

curve, its bad data 

segment and eventful 

data segment have weak 

temporal correlation with 

its normal data segment.

Criteria: Bad Data 

VS Eventful Data

 For a particular PMU curve, its bad data 

segment has weak spatial correlation with 

corresponding data segments of its 

neighboring PMU curves.

 Its eventful data segment has strong 

spatial correlation with corresponding 

data segments of its neighboring PMU 

curves.

PMU Bad Data: 

Spatio-Temporal 

Outlier
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Online Detection of Bad PMU Data

Spatio-Temporal Correlation 

Metrics (Distance Function)

 For high-variance bad data:

 For low-variance bad data:

Density-Based 

Local Outlier Detection

 Local Outlier Factor:

 Local Reachability Density:

 Bad Data Detection:

 LOF(p) >> 1: p contains bad data.

 LOF(p) ≈ 1: p contains good data only.

 Low-variance bad data: 

un-updated data, etc.

 High-variance bad data: data 

spikes, data loss, high noise, 

false data injections, etc.
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Online Detection of Bad PMU Data
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Numerical Results – Data Spikes

Test Case Description

• 22 real-world PMU real power data curves.

• PMU No. 10, 13, 16, 21 contain data spikes 

lasting from 1.05s to 1.1s.

• Line tripping fault is presented around 4s.

Numerical Results Description

• All the 4 bad data segments are detected.

• System event does not cause false alarms.

• Detection delay is less than 0.18s.

• Computation time for each data window is 

0.0197s.
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Numerical Results – Un-updated Data

Test Case Description

• 13 real-world PMU current magnitude data 

curves.

• PMU No. 1, 5, 7, 13 contain un-updated data 

lasting from 1s to 1.2s.

• Line tripping fault is presented around 4s.

Numerical Results Description

• All the 4 bad data segments are detected.

• System event does not cause false alarms.

• Detection delay is less than 0.18s.

• Computation time for each data window is 

0.0115s.
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Conclusions

Conclusions

An approach for PMU bad data detection is proposed:

 It is purely data-driven, without involving any knowledge on network 

parameters or topology, which avoids the impact of incorrect 

parameter/topology information on the identification results.

 It encounters no convergence issues and has fast computation 

performance, which is desirable for online application.

 It is suitable for identifying bad data in PMU outputs under both normal 

and eventful operating conditions.
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