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Problem Motivation

J Phasor Measurement Units:
High sampling rate: 30/60 samples/second

Usually multi-channel: measure bus voltage phasors,
line current phasors, and frequency.

1 PMU data is considered a source of Big Data in power
systems.

 Missing Data affect applications such as state
estimation and disturbance identification.

Developing reliable and computationally efficient PMU
data recovery methods.
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Low-rank Property of PMU Data

U Existing missing data recovery: interpolation from
measurements in the same channel.

 Our approach: Analyze PMU data of multiple time
instants collectively from PMUs in electrically close
regions and distinct control regions.

U Process spatial-temporal blocks of PMU data for
tasks such as missing data recovery, data
compression and storage, disturbance triggering,
detection of data substitution attacks.

 Key feature: low-rankness of PMU data blocks. (also
observed in Chen & Xie & Kumar 2013, Dahal &
King & Madani 2012.)
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Low-rank Property of PMU Data

(J 6 PMUs measure 37 voltage/current phasors. 30
samples/second for 20 seconds.

 Singular values decay significantly. Mostly close to zero.
Singular values can be approximated by a sparse vector.

J Low-rankness also used in Chen & Xie & Kumar 2013, Dahal
& King & Madani 2012 for dimensionality reduction.
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Missing data recovery in low-rank PMU data
matrix

(J Our approach: leverage low-rankness of PMU data
blocks.

Low-rank matrix completion Problem!

Quite a few recovery algorithms exist.
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Low-rank matrix with missing entries
BCuURENT



(@) Low-rank Matrix Completion Methods

Nuclear norm minimization (Fazel 2002), recover the
missing data by solving a convex program:
min |||

Singular Value Thresholding (Cai 2010), iteratively solve a modified
version of the nuclear norm minimization problem:

. 1 2
min 7||X][. + 2 [|X]|F

s.t. X is consistent with the observed entries.
|1X ]|« = sum of singular values of X
||X||4 = sum of the absolute squares of all entries of X
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OLAP (Online Algorithm for PMU Data
Processing)

OLAP can fill in the missing data in real-time.

OLAP continuously updates dominating singular values and
singular vectors. The new data is viewed as a linear combination
of existing singular vectors.

OLAP is adaptive to the dimension change of the subspace.
Disturbances in the power system can cause the dimensionality
of a PMU data matrix to vary rapidly with time.

Gao, Wang, Ghiocel, and Chow, IEEE Transactions on Power Systems, 2016
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== Theoretical Analysis of PMU Data Recovery
= by Low-rank Matrix Completion Methods

The locations of missing PMU data are usually correlated.

d Temporal correlation: loss of consecutive measurements in one
PMU channel.

d Spatial correlation: loss of measurements in multiple PMU
channels simultaneously.

Theoretical guarantee of low-rank matrix completion when the
locations of missing points are correlated.
Although the locations of the missing entries of a rank-r matrix are

temporally or spatially correlated, all missing entries can be
1 1 1

2 — .
correctly recovered as long as O(n~ r+irr+1 logr+1n) entries are
observed.

Gao, Wang, Ghiocel, and Chow, IEEE Transactions on Power Systems, 2016
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Data Recovery

[ Tested: Ten 5-minute data segments of NYS
PMU data during grid disturbances.

JRecovered:
Q Voltage magnitude (53 channels)
Q Voltage angle (53 channels)
Q Frequency (53 channels)
Q Current magnitude (264 channels)
Q Current angle (264 channels)
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OLAP Results

Varying the threshold parameter for the OLAP algorithm allows the
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Computation time (2.60 GHz Intel Core i5 with 16 GB RAM):

Voltage Voltage Frequency Current Current
maghnitude angle magnitude angle

OLAP 1.305secs 1.327secs 1.239secs 8.121 secs 9.113 secs
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Data Recovery Results

Data recovery of a NYS disturbance for voltage magnitude, voltage
angle, and frequency.
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Data Recovery Results

Data recovery of a NYS disturbance for current magnitude
and current angle

Current magnitude original Current angle original
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ecovery Results — Consecutive data drops
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Recovery Results — Numerous data drops

Original Data Channel 24
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OLAP

recovery results for
OLAP and SVT
when there are a
large number of
data drops.
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Data Recovery Challenges

. Pre-processing:
Q Bad data check
A Angle unwrapping

JInput parameters:
Q Especially hard to determine for SVT

BCuURENT



Real-time OpenPDC Implementation

Other
Applications

Ex: data visualization

Data Recovery Phasor State
Algorithm Estimator

Open PDC

‘
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Conclusions

dMissing data recovery by exploiting low-
dimensional structures in PMU data.

dBoth offline and online missing data recovery
methods are reported.

JdMissing PMU data was successfully recovered,
even in cases of consecutive data drops or
numerous data drops.
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