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Applications

Providing Dynamic Information
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Steady State Model Synthesis (SSMS)
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Illustration Example: Model synthesis of sample active 
distribution network

SLIDE 6

Event 1: A lateral MV feeder disconnects at Node 834 at t = 40 s

Event 2: A wind farm generation of 1 MW (0.2 p.u.) disconnects at Node 854 at t = 70 s. 

Sample  power system network
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Illustration Example: Model synthesis of sample active 
distribution network

SLIDE 7

40 50 60 70 80 90 100

0.95

1

V
a

 (
p

.u
.)

40 50 60 70 80 90 100

0.2

0.3

0.4

Ia
 (

p
.u

.)

 

 

true

reproduced

40 50 60 70 80 90 100

-1.2

-1.15


a
 (

r
a

d
)

40 50 60 70 80 90 100

-2.5

-2

-1.5

Time (sec)


a
 (

r
a

d
)

 

e1=0.00022 p.u. e2=0.0027 p.u. e3=0.00025 p.u. 

e1=0.0019 p.u. e2=0.0119 p.u. 

e3=0.00039 p.u. 

e1=0.00029 rad. 
e2=0.00016 rad. 

e3=0.00032 rad. 

e1=0.0011 rad. 

e2=0.0086 rad. e3=0.0031 rad. 
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True phasors vs Reproduced phasors at PMU 1 and PMU 2

True phasors vs Reproduced phasors at PMU 1 True phasors vs Reproduced phasors at PMU 2

The end-to-end TVE is less than 3%.
Submitted to IEEE Transaction on Power Delivery (2nd review):

F. Mahmood, H.Hooshyar, L. Vanfretti, “Real-time Reduced Steady State Model Synthesis of Active Distribution Networks 

Using PMU Measurements”
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Dynamic Model Synthesis of Distribution System
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Centralized vs decentralized architecture (local mode visibility) 
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Centralized vs decentralized architecture (better observability) 

Dynamic Stability Indices

Decentralized Mode Estimation

More information to appear in IEEE PES General Meeting 2016 in Boston:

R. S. Singh, M. Baudette, H.Hooshyar, L. Vanfretti, “‘In Silico’ Testing of a Decentralized PMU Data-Based Power Systems 

Mode Estimator”

SLIDE 10
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By samplings from PMU1 and PMU2, 

three different equivalent models are developed 

Computation of stability indicators based on real-time measurements and equivalent models.

Voltage Stability Analysis in Distribution Networks
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Three different PV curves are calculated from the three models.

The voltage stability and instability indices are calculated from these models to indicate the 
contributions of two networks on the voltage stability. 
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SLIDE 13

LABVIEW Application

Real-time simulations results for aggregated 
load (LV network) seen from PMU22:

A. all distributed generations inside MV network
are connected

B. all distributed generations inside MV network
are disconnected
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Feeder Dynamic Rating Application for Active Distribution Network Using 
Synchrophasor

• Dynamic line rating (DLR) is a way to optimize the ampacity of transmission and distribution 
lines by measuring the effects of weather and actual line current.

• IEEE 738 Standard: Can be used to calculate conductor line Ampacity and Conductor 
temperature if conductor material properties, ambient weather conditions and actual line 
current is known GPS Time Source

• State Change Equation: Relates two different states of an overhead conductor. The values of 
conductor temperature and corresponding parameters in one state can be used to estimate the 
conductor temperature in another state.

• Kalman filter: A filtering technique that uses a series of measurements observed over time to 
produce a more precise estimate. Gives a more precise estimate of conductor temperature.  

SLIDE 14
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HIL Setup
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LabVIEW application and sample results

Event 2

Static 

rating

Event 1

Event 1: Outage of a line.

Event 2: Outage of a wind generation (more power t be drawn from the grid).
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Adaptive Auto-Reclosing (AAR)

• The proposed AAR scheme is capable to:

 Firstly, in the case of single-phase faults discern between temporary and permanent 
faults. This is done by considering the voltage phasor of the opened-phase (shown 
below). 

 Secondly, in case of temporary single-phase faults, recloses when the secondary arc 
extinguishes (when TVD backs close to zero).  

 Thirdly,  in the case of permanent or non-detectable faults, reclose only when the 
healthy part of the network is able to tolerate another reclosing attempt. In this case 
the Stability and Thermal indices are calculated based on the PMU’s outputs.
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Permanent 1-phase 

fault

Temp. 1-phase fault
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Results
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The TVD index during and after the fault: The voltage of the faulted phase and the CB status:
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 Before the fault occurrence the TVD is close to zero.

 After fault, its value goes up dramatically.

 Finally, after the arc extinction TVD backs to zero.

 The proposed method send the close command after the arc extinction.

Fault occurrence

Arc extinction
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Proposed Method and Implementation

SLIDE 19

Issuing the reclosing 

command

Providing information on different 

considerations:

• For 1-phase faults, whether the 

fault cleared.

• For 3-phase faults, whether the 

system operating point is far 

enough from the stability 

margins to tolerate another fault 

(in case the fault is not cleared).

• For 1-phase and 3-phase faults, 

whether the conductors are 

cooled down.
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Thank You


