Peak Reliability Synchrophasor Technology Implementation Roadmap and Current Progress

October 19, 2016, NASPI Meeting, Seattle

assuring the wide area view

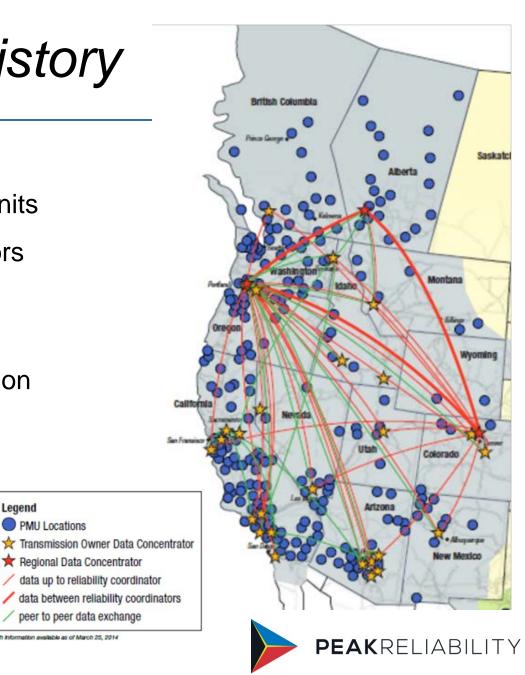
Hongming Zhang, Brett Wangen

Outline

- Where we are at Synchrophasor Implementation
 - A short review of WISP and PRSP projects
- Roadmap of Synchrophasor Technology Implementation towards Control Room Solution (CRS) Use Cases Development
- Conclusion

WISP - A little history

WISP Accomplishments:


- 585 Phasor Measurement Units
- 69 Phasor Data Concentrators
- WAN Communication Infrastructure
- Data Center(s) and Information **Technology Infrastructure**

Legend

PMU Locations

With Information available as of March 25, 201

- Advanced Transmission Software Applications
- Control Room Remodel & Expansion

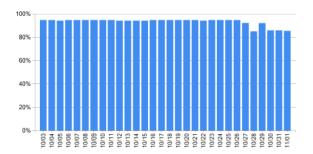
WISP Infrastructure

- WISP WAN for PMU data transport
- SharePoint infrastructure to externalize applications
- Phasor Measurement devices (PMU)
- Phasor Data Concentrators (PDC) and Historians
- PhasorPoint analytical application (Oscillation detection and monitoring plug-ins)

Data Management & Quality

80,000 data points stored at primary and backup sites every second
2GB data per hour

Data

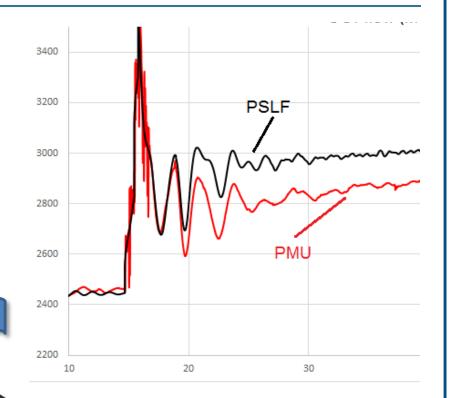

openPDC Data Quality Report Peak Reliability

Sunday, November 01, 2015

5-day Device Data Quality

	10/28	10/29	10/30	10/31	11/01
L4: Good	150	154	155	154	154
L3: Fair	11	20	18	19	18
L2: Poor	21	9	26	26	27
L1: Offline	6	5	1	1	1
L0: Failed	1	1	1	1	1
Total	189	189	201	201	201

Percent of Devices with Acceptable Quality (30 days)



PRSP – Delivering Value

- Data Quality Tools
- Model Validation
- Angle Integration into State Estimation
- Baselining, oscillation detection, LSE

PRSP

Bringing it all together – Peak Visualization Platform (PVP)

- Geo Spatial data organization and visualization
- Organize data from multiple sources

PVP

Control Room of the Future

Getting this technology operational requires:

- Data quality
- Visualization and alarming
- Training
- Coordination Procedures, actions to take
- Communicate and implement the roadmap

Roadmap of Synchrophasor and CRS Use Cases Development

PEAKRELIABILITY assuring the wide area view

Peak Initiative, Strategy and Tactic

- Drive Operational and Technological Excellence
 - Promote data accuracy and bring data, models and tools to maturity
 - Increase synchrophasor tool value to system operations
 - Perform system model validation (MOD-033) by PMU data
 - Implement linear state estimation to support PMU data validation and conditioning
 - Provide PMU data driven backup visualization for operational awareness in case of ICCP or EMS failure

IABILITY

- Perform phase angle separation, islanding and frequency excursions monitoring
- Monitor system oscillatory modes and forced oscillations

System Event Validation Framework

- Peak staff leads WECC/MOD-033 task to validate system models with PMU data
 - We made a few achievements till date:
 - Map up 96% generating unit capacity in our EMS model with WECC planning *.dyd files
 - Enable online TSAT run in 'Monitor' mode for transient stability assessment for every 15 minutes.
 - Validate TSAT event simulation output with recorded PMU data
 - Create a pre-disturbance basecase from two ways
 - 1) Production EMS SE snapshot cases (5 minutes auto archived)
 - 2) DTS event replay SE case (10-20 seconds prior to the event)

The basecases were exported/shared in GE/PLSF and PowerWorld

Creating a Pre-Disturbance Case from DTS Replay

- Our EMS records all SCADA values in Historical Data Record (HDR) files in real time
- Our DTS tool has the capability of replaying these HDR files while having SE and RTCA up running
- Peak team developed a quick process to enable creating desired SE solution cases from replay
- The function allows us to create a SE snapshot 10-20s prior to the event roughly
- By DTS Replay Peak could build a system event simulation and validate it by TSAT in hours now

AKRELIABILITY

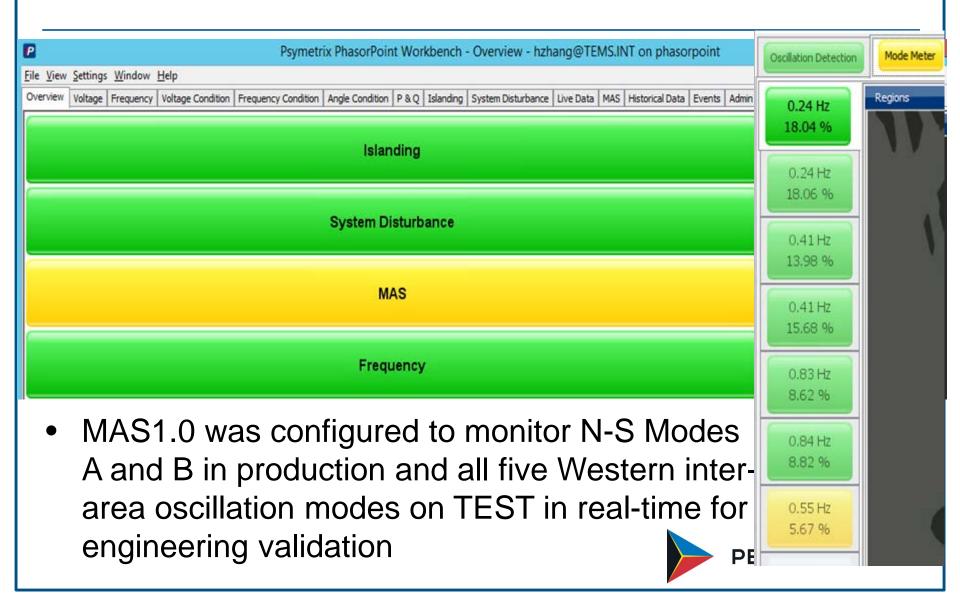
Grid Operation Situational Awareness

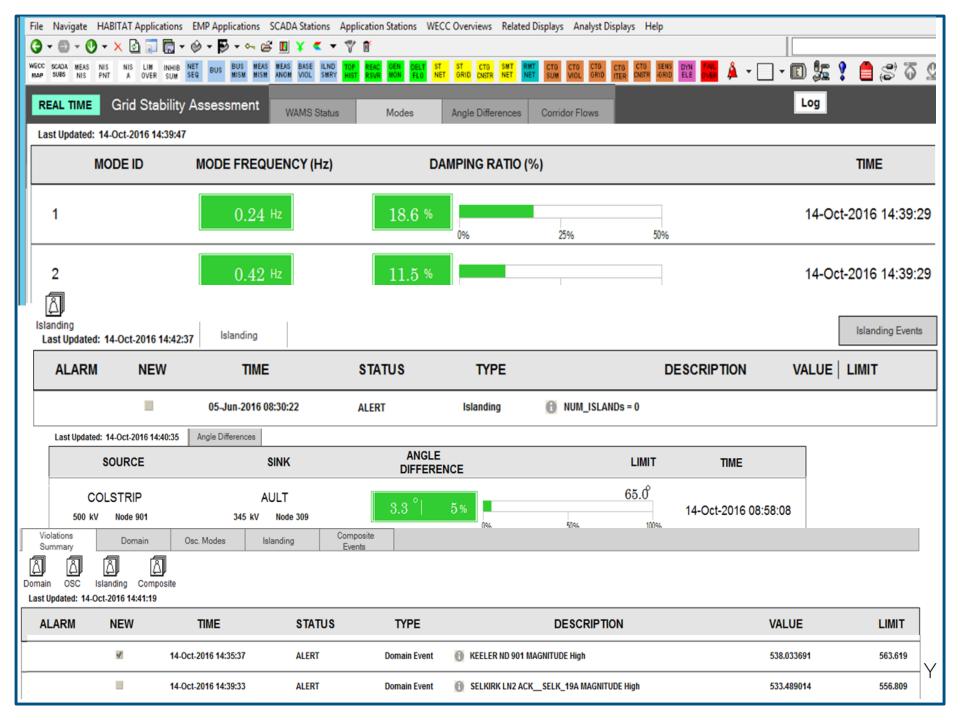
- Ensure high quality down sampled (DS)
 PMU available for Situational Awareness
 - Supplemental to ICCP measurements
 - 238 PMU data received and 250+ PMU will come in
 - Calculate line flows (P/Q) and Path flows from PMU Voltage and Current signals (in progress)
 - o Enable LSE solution for PMU data conditioning
 - Make DS PMU data (frequency, voltage and resultant line/path flows) available for RC situational awareness in case of ICCP link failure

ABILITY

Enable Angle Separation Monitoring

- Monitor phase angle difference (PAD) for selected Paths/IROLs or wide area bus pair
 - Enable SE solved phase angles available for PAD monitoring due to limited PMU coverage
 - New approach-<u>Virtual Bus Angle</u> was developed to monitor angular stress on specific Path or IROL
 - Enhanced TSAT software to calculate PAD limits for every 15 minutes on selected paths/IROLs
 - Integrate DS PMU or SE solved voltage angles, TSAT output PAD limits to the CRS for awareness of a stressed condition or operation pattern change

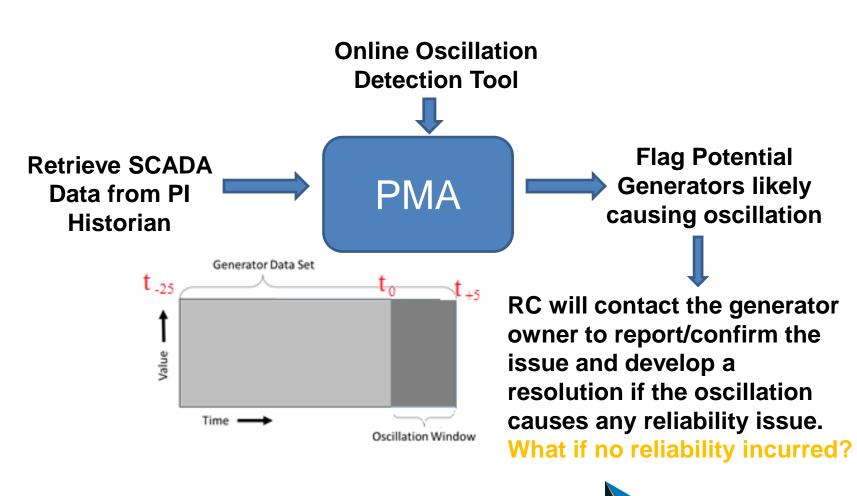

ABILITY


Enabling Mode Meters for CRS Use

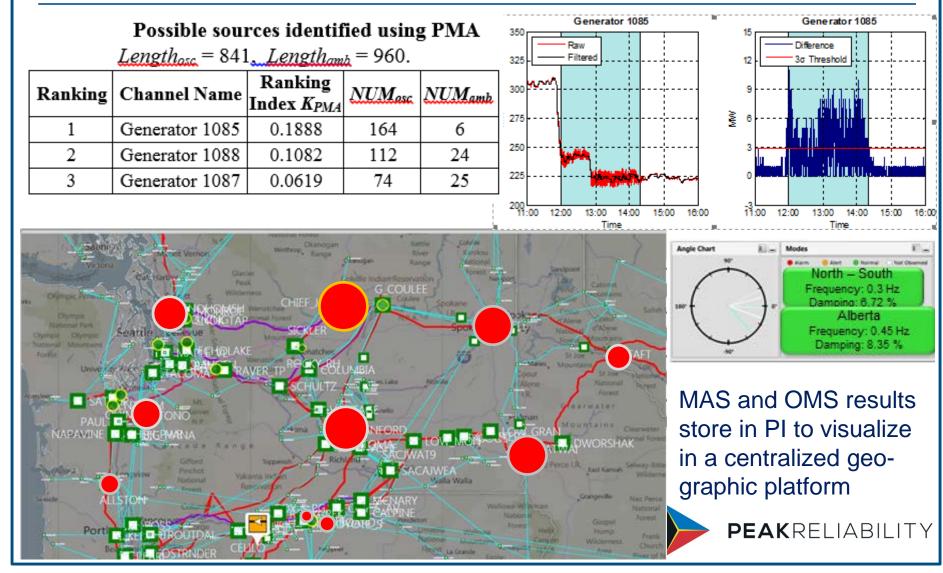
- Integrate MontanaTech MAS into the CRS enviroment
 - MAS 1.0 output results transfer to EMS via GSA that has been functional since May 2016
 - Work on new GSA enhancement to modify OSCMOM data tables to enable the data to be stored in OSI PI
 - Mode Meter/Oscillation Detection alarm baselining
 - MAS2.0 offline mode acceptance test completed Real-time mode upgrade will be considered
 - Visualize and alarm MAS results in CRS use

GE-Alstom PhasorPoint Built in MAS 1.0

Forced Oscillation Detection and Online Source Locating


- Integrate WSU OMS online results into the CRS for actionable alarms and visualization
 - Through the CERTS project Peak deployed
 WSU OMS online tool into our Lab at 06/2016
 - Work closely with the project team to validate the tool and review oscillation results bi-weekly
 - Two source location algorithms using both PMU and SCADA data were developed and validated offline
 - Prototype of integrating WSU OMS tool with source location algorithms into PI Processbook for actionable alarms and user friendly visualization

Forced Oscillation Source Identification


- Not all generators are covered by PMU. It results in difficulty of finding the source from mode shapes
- SCADA data is much more readily available
 ~10 second sample rate in Peak EMS/SCADA
- Peak collaborated with WSU to develop a new Pattern Mining Algorithm-PMA to process the SCADA data to find the likely cause of oscillations
 - The key is recognizing the pattern caused by the oscillations to SCADA data and ruling out Noise effects
 - PMA was used to identify six oscillation events correctly from 3-5 minutes of oscillation data

Operationalizing the Tool (In Progress)

CRS: Visualize MAS and OMS Solutions Results in a Centralized Geographic View

Conclusion

- Peak (formerly WECC RC) made a long way to implement synchrophasor applications in a control room setting
- The synchrophasor implementation roadmap and CRS use cases were defined to increase value of synchrophasor applications to system operations
- Target to roll out identified use cases in the control room in 2 years

Hongming Zhang, <u>hzhang@peakrc.com</u> Manager, Network Applications Brett Wangen, <u>bwangen@peakrc.com</u> Director, Engineering