
Prof. Dave Bakken
Washington State University

Quality of Service
Design Considerations

for NASPInet

NASPI Working Group Meeting
Scottsdale, Arizona, USA

February 4, 2009

Outline

• Context
• Quality of Service (QoS) Basics
• QoS Properties, Mechanisms, Resources
• Other Misc. Considerations

© 2009 Washington State University Dave Bakken NASPInet QoS–2

3

NASPInet Service Classes
are really mostly QoS Categories!

NASPInet
Traffic Attribute

A: Feedback
Control

B: Feed-Fwd.
Control

C: Post
Event

D: Visual-
ization

E: Research

Low Latency 4 3 1 2 1

Availability 4 2 3 1 1

Accuracy 4 2 4 1 1 - 4

Time Alignment 4 4 1 2 1 - 4

High message rate 4 2 4 2 1

Path Redundancy 4 4 1 2 1

Key: 4-critically important 3-important 2-somewhat important 1-not very important

• NASPInet’s only raison d'être is to serve power apps!
• Classes are QoS Categories, each with many algorithms (&

parameterizations & configurations thereof)
• Thought Q: how to support many apps all at once….
• Q: “Why not Sprint (or other teleco) for NASPInet?”

NASPInet Architecture

Most QoS is provided via the Data Bus (GridStat is an instance) from GW↔GW

NASPInet Data Bus (Data Delivery Plane)

© 2009 Washington State University Dave Bakken NASPInet QoS–5

NASPInet Data Bus vs. Internet
Requirements more stringent but environment more forgiving
• Smaller scale (~104 FEs vs ~108 routers)
• Strong QoS guarantees vs. best effort (critical

infrastructure), quick recovery
– Do not allow path instabilities that can occur on the Internet
– Cannot use ACKs/NACKs to “guarantee” delivery like TCP/IP

• Much more control over traffic
• Much more knowledge of IT topology and usage (a priori)
• Multicast is the norm, not the exception
• Note: these key differences must directly and explicitly be

exploited for better QoS
– More info on this: see a paper we have in review… (email me)

© 2009 Washington State University Dave Bakken NASPInet QoS–6

Outline

• Context
• QoS Basics
• QoS Properties, Mechanisms, Resources
• Other Misc. Considerations

© 2009 Washington State University Dave Bakken NASPInet QoS–7

What is QoS?
• Usual software API (e.g., CORBA IDL) tells “what” can or

should be done
Note: AKA “business logic” or “functional properties”

• Quality of Service is the non-functional “how” to do the
above “what”

• I.e., with how much performance, robustness, cyber-
security, quality of result (goodness, correctness), cost, ….

• Note:
– Older view of QoS: link-level performance
– More recent view (last decade) is above: end-to-end, multi-

dimensional (supporting multiple QoS properties)

© 2009 Washington State University Dave Bakken NASPInet QoS–8

QoS Properties/Dimensions (1)
• Latency (IEEE 1646, substation scope)

– 4 ms within substation, 8-12 external for all but very fastest
Low latency over hundreds of miles opens up new protection …..

• Rate (1/minute to 250/second)
• Availability of Data (EPRI IntelliGrid 2004)

© 2009 Washington State University Dave Bakken NASPInet QoS–9

Level Availibility (%) Downtime/Year
Ultra 99.9999 ~ ½ second
Extremely 99.999 ~5 minutes
Very 99.99 ~1 hour
High 99.9 ~9 hours
Medium 99.0 ~3.5 days

• Delivered QoS must be tailorable per data item &
changeable (in SW)

QoS Properties/Dimensions (2)
Other ones are mostly traditional cyber-security…
• Confidentiality
• Integrity
• Availability (often most important); covered earlier
• Sometimes also: non-repudiation, auditing, …
Also trust management (backup slides…)

© 2009 Washington State University Dave Bakken NASPInet QoS–10

QoS is “Above the Network” (End-to-End)
• Computer networking techniques necessary but not

sufficient
• Need also “distributed computing” and its middleware to

capture end-to-end application requirements (backup slides)
– Sensor-to-app (QoS instrumentation/verification: end-to-end)
– Higher-level adaptations (than link-level or transport level)

• Keep it manageable:
– Keep business logic separate from QoS parameters & adaptations
– I.e., “separation of concerns”, don’t entangle above

© 2009 Washington State University Dave Bakken NASPInet QoS–11

Outline

• Context
• QoS Basics
• QoS Properties, Mechanisms, Resources
• Other Misc. Considerations

© 2009 Washington State University Dave Bakken NASPInet QoS–12

Providing QoS Properties (1)
• “You can’t have it all”: can not

– Provide max value of all dimensions/properties
– Provide precise levels of all properties at once (or even most)

• QoS allocation (AKA QoS Management) maps from QoS
requirements (properties) onto
mechanisms/algorithms/protocols that provide it
– Different mechanisms provide different levels of QoS and take

different levels of resources (CPU, bandwidth, storage)
– Allocation done at runtime (connection setup usually), need to

have QoS provisioning/planning so there are enough resources

© 2009 Washington State University Dave Bakken NASPInet QoS–13

Providing QoS Properties (2): Mechanisms
• Latency mechanisms: chain of

– Network-level QoS “reservations” for performance
– Real-time bounds in NASPInet FEs

• Confidentiality mechanisms: encryption
• Integrity mechanisms: higher-level algorithms built on top

of encryption (e.g., digital signing)
• Availability mechanisms: replication (spatial, temporal,

value) & end-to-end latency guarantees (below)

© 2009 Washington State University Dave Bakken NASPInet QoS–14

Providing QoS Properties (3): Mapping Down
Higher-level required QoS properties mapped onto lower-

level properties and then onto available mechanisms
• Appl-level-1: freshness = max_period + max_latency
• Appl-level-2: rate to delivery a given update over given

path of links (each with given link-level latencies)
• Network-level-1: bits/second over a given link
• Network-level-2: parameters of given network-level QoS

mechanism
– INTSERV/RSVP: buffers in routers along the path
– DIFFSERV: service class/priority

Must keep the app-level requirements as high as possible
– Will change
– Different mechanisms available in different configurations

© 2009 Washington State University Dave Bakken NASPInet QoS–15

Outline
• Context
• QoS Basics
• QoS Properties, Mechanisms, Resources
• Other Misc. Considerations

© 2009 Washington State University Dave Bakken NASPInet QoS–16

Aperiodic Events
• So far dealing with periodic events that are very predictable
• Have to handle aperiodic events whose rates cannot always

be known a priori:
1. Power control messages (to actuator or control center)
2. Power alarms/alerts
3. IT control messages (configure or adapt NASPInet)
4. IT instrumentation messages (performance, intrusion detection)
5. IT alarms (e.g., end-to-end QoS violation detected at subscriber)
6. Service classes C (Post-Event) & E (Research); ?DFRs

• Strategy for handling aperiodic events
– Allocate each kind above a fixed % of resources & enforce in HW
– Intelligent aggregation of #2 and #5 (the unpredictable ones)
– Other lower-level techniques in real-time computing R&D

© 2009 Washington State University Dave Bakken NASPInet QoS–17

Keeping it Evolvable over Lifecycle ($$$$)
• Don’t hard-code required QoS properties into power apps

– Will change over life-cycle with more studies (!recompile code)
– Will change at runtime under different operating regimes – steady

state vs. cyber-attack vs. power contingency “drilling down” …)
Alternative: separate requirements for IT integrator/operator

• Don’t hard-code available (or assumed) mechanisms or
resources (e.g., Navy ships)
– Will change over lifecycle with system growth
– Will change at runtime with IT failures and cyber-attacks
Alternative: map properties onto existing mechanisms; use policies

for resource allocation constraints(next slide)
• Note: I see a lot of this hard-coding in the power industry

– E.g., latch onto bridged ethernet or IPv6 multicast
Alternative: focus on required properties, not mechanisms+resources

© 2009 Washington State University Dave Bakken NASPInet QoS–18

Resource Policies for Flexibility
• Policies can be simple database or simple language, about

QoS or resources (not just cyber-security)
• Examples:

– “Which entities/utilities get access permission for what sensor
variables under what conditions ?”

– “How much bandwidth through my domain should I allow utility
X to have for power application Y or ancillary service Z, and under
what conditions”?

– “How are the (runtime) conditions above defined and measured?”
– ….

• Adaptive strategies are really a kind of policy (and involve
tradeoffs) that provide a higher-level mechanism

© 2009 Washington State University Dave Bakken NASPInet QoS–19

Q: What QoS Does Your NASPI App Need?
• What max latency & rate (freshness) do you really need?
• How can your application suffer the following and still do

what it needs to:
– Intermittently longer latencies
– Intermittent short spurts of dropped messages
– Outages of some of its input data
– …

Not studied much by power community, but need to IMO!

© 2009 Washington State University Dave Bakken NASPInet QoS–20

Conclusions
• QoS is

– the “how” a service does “what” it does
– multi-dimensional
– Not just above the traditional “network level” (e.g., Cisco routers)

but also more end-to-end (distributed computing & middleware)
• NASPInet requires guaranteeing a wide range of multi-

dimensional QoS combinations
– Can leverage lessons learned from military systems
– But exploit “better” characteristics (smaller scale, more control, ...)
– NASPInet will be complex middleware needs to apply a lot of

distributed computing knowledge
“You have an IT Problem, not a power problem”

– Matt Heere, OSISoft, September 2007
© 2009 Washington State University Dave Bakken NASPInet QoS–21

For More Info (1)
• Zinky, John A. and Bakken, David E. and Schantz, Richard

E., “Architectural Support for Quality of Service for
CORBA Objects”, Theory and Practice of Object Systems
(Special Issue on CORBA and the OMG), 3:1, April 1997,
55–73.
– What QoS issues applications face when they have to run over a

wide area
– How QoS gets entangled in the business logic and the problems it

causes
– What systematically can be done about the above (Multi-

dimensional QoS middleware, separation of concerns, …)
– Version 1 of Quality Objects (QoO) middleware
– (Heavily cited paper)
– http://www.dist-systems.bbn.com/papers/1997/TAPOS/

© 2009 Washington State University Dave Bakken NASPInet QoS–22

For More Info (2)
• David E. Bakken, Carl H. Hauser, Harald Gjermundrød, and

Anjan Bose. “Towards More Flexible and Robust Data
Delivery for Monitoring and Control of the Electric Power
Grid”, Technical Report EECS-GS-009, School of
Electrical Engineering and Computer Science, Washington
State University, May 30, 2007.
– How distributed computing can help NASPInet
– GridStat overview
– http://www.gridstat.net/TR-GS-009.pdf

© 2009 Washington State University Dave Bakken NASPInet QoS–23

For More Info (3)
• David Bakken, Carl Hauser, Harald Gjermundrød.

“Periodically Updated Variables: Wide-Area Publish-
Subscribe Middleware Supporting Electric Power
Monitoring and Control”, submitted for review to the 2009
IEEE International Conference on Distributed Computing
Systems (ICDCS).
– How NASPInet environment is different from the Internet
– Much more precise definition of NASPInet data bus requirements

for streaming real-time data
– Email Dave Bakken for a copy

• Contact coordinates: bakken@wsu.edu 509-335-2399
www.gridstat.net

© 2009 Washington State University Dave Bakken NASPInet QoS–24

Outline

• Context
• QoS Basics
• QoS Properties, Mechanisms, Resources
• Other Misc. Considerations
• Backup Slides

– Issues on QoS Properites & Mechanisms & Resources
– Middleware and Distributed Computing
– Smart Grids for Distribution need good communication &

synchronized data
– Other Misc. Electricity+IT slides
– Some GridStat Details

© 2009 Washington State University Dave Bakken NASPInet QoS–25

A Crucial Note on Network & Publisher Load

© 2009 Washington State University Dave Bakken NASPInet QoS–26

SR …Pub.
Sub. #1

GridStat/NASPInet: 1 copy (max) of a given update on any network link:

SR

SR

SR

SR

Sub. #2

Sub. #37
……1 1 1

1 1

1

1
1

1

1
1

11

Problems: (1) network load (2) publisher load (3) multiple encrypts

Direct network programming: up to 37 copies (#subs) of a given update:

IP …Pub.
Sub. #1IP

IP

IP

IP

Sub. #2

Sub. #37
……

37 22 16

15

6

5
1

4

1
1

48
3 7

Note on IP Multicast (1) not everywhere (2) can’t do per-sub QoS

Note: per-subscriber QoS (rate, lantency, #paths) via rate filtering: if a
subscriber (or subtree) does not need a given update it is not sent on

QoS Properties/Dimensions (2) TRUST
Other ones are mostly traditional cyber-security…
• Confidentiality
• Integrity
• Availability (often most important); covered earlier
• Sometimes also: non-repudiation, auditing, …
But traditional cyber-security is not enough
• Trust management: systematically reasoning about

– How much trust to place in data received, especially when via
• Chains of processing (pub-sub)
• Aggregation of many different inputs from different sources

– How much access to data to provide potentially untrustworthy
entities

– How to certifiably introduce an outside entity for access control
© 2009 Washington State University Dave Bakken NASPInet QoS–27

Distributed QoS Dave Bakken

QoS-Aware Resource Management I: Many
Mechanisms Give the Correct Functionality, But
Are Appropriate for a Small Set of Conditions

Allocation
Algorithms

QoS
Performance
Availability
Security
…

Utilization
Cost
Ownership

Resources
Capacity
Reliability

Usage Pattern
Arrival Rate
Priority

Applications
know Their Usage Pattern
and QoS Requirements

System Managers
setup resources and
set usage polices

Mechanism
given usage pattern
and resources, yield
QoS and Utilization

Distributed QoS Dave Bakken

QoS-Aware Resource Management II: Control over
Resource Allocation is Useless w/o Information on

Usage Patterns & QoS Requirements

Appropriate
Control BandQualitative

Quantitative

Ad Hoc

Information Detail

Amount of Control
Little Lots

Current
Dist. Syst.
Practice

Comm QoS
Multimedia
R+DWaste of Time

Controlling
on Noise

Distributed QoS Dave Bakken

Application-Level Adaptation Choices
• Q: How can distributed applications become more

predictable and adapt to changing system conditions?
– Control and Reserve Resources
– Utilize alternate Resources (redundancy)
– Use an alternate mechanism (with different system properties)
– Take longer

• reschedule for later
• tolerate finishing later than originally expected

– Do less (Happiness ≡ success / expectations)
• Note the multiple possible layers of adaptation (a) Client

application logic (b) Above the middleware core on
client-side (c) Inside the middleware (d) Above the
middleware core on server-side (e) Server logic

• Premise: supporting all the above choices is helpful!

© 2009 Washington State University Dave Bakken NASPInet QoS–31

Networking Review
• Networking technology radically improved in last decade
• Some network technologies

– Internet Protocol (IP): links LANs
• best-effort (no QoS)
• IPv6 has multicast (unreliable; can’t do rate filtering & per-sub QoS)

– TCP: retransmits data to provide reliability; no predictable latency
– ATM: packet-switching over virtual circuits

• Bandwidth guarantees, good latency predictability and reliability (QoS)
• No multicast

• Bottom line: you can’t just “plug in a network” using only
off-the-shelf technology for next-generation power grid
communications (see TR 009 for detailed explanation)
– IPv6 & ATM provide useful building blocks, but more is needed
– Need managed data delivery services above network level

Outline

• Context
• QoS Basics
• QoS Properties, Mechanisms, Resources
• Other Misc. Considerations
• Backup Slides

– Issues on QoS Properites & Mechanisms & Resources
– Middleware and Distributed Computing
– Smart Grids for Distribution need good communication &

synchronized data
– Other Misc. Electricity+IT slides
– Some GridStat Details

© 2009 Washington State University Dave Bakken NASPInet QoS–32

What is Distributed Computing?
• Computer networking: gets bytes from A to B
• Distributed Computing: answers the following kinds of

questions on how to use a network for given purposes:
– How to synchronize and replicate data
– How to structure the architecture of large distributed systems
– How to handle end-to-end, application-level: fault tolerance,

security, quality of service (QoS)
– How to create middleware (esp. for wide area) that makes

applications easier to program, manage at runtime, evolve over
lifetime, …

© 2009 Washington State University Dave Bakken NASPInet QoS–33

CptS 464/564 Fall 2007 Middleware in Context: © 2007

Context: (Most) Technology Marches On
• Hardware technology’s progress phenomenal in last few

decades
– Moore’s Law
– Metcalf’s Law
– Graphics processing power

• Software technology’s progress is much more spotty
– “Software crisis”
– Yet SW is a large and increasing part of complex apps/systems!

• Apps and systems are rapidly becoming (more) networked
– Oops, distributed software is much harder yet to get right…

• Middleware a promising technology for programability of
distributed systems
– Also fertile grounds for adaptivity and dependability….

CptS 464/564 Fall 2007 Middleware in Context: © 2007

Why Middleware?
• Middleware == “A layer of software above the

operating system but below the application program
that provides a common programming abstraction
across a distributed system”

• Middleware exists to help manage the complexity and
heterogeneity inherent in distributed systems

• Middleware provides higher-level building blocks
(“abstractions”) for programmers than the OS provides
– Can make code much more portable
– Can make them much more productive
– Can make the resulting code have fewer errors
– Analogy — MW:sockets ≈ HOL:assembler

• Middleware sometimes is informally called “plumbing”
– Connects parts of a distributed application with “data pipes”

and passes data between them

CptS 464/564 Fall 2007 Middleware in Context: © 2007

Middleware

Middleware in Context

Distributed
Application

OS Comm. Processing Storage

Distributed
Application

Network

Host 1 Host 2

Middleware

Operating System API

OS Comm. Processing Storage

Operating System API

Middleware API Middleware API

Client Server

CptS 464/564 Fall 2007 Middleware in Context: © 2007

Middleware Benefit: Masking Heterogeneity
• Middleware’s programming building blocks mask

heterogeneity
– Makes programmer’s life much easier!!

• Kinds of heterogeneity masked by middleware (MW)
frameworks
– All MW masks heterogeneity in network technology
– All MW masks heterogeneity in host CPU
– Almost all MW masks heterogeneity in operating system (or

family thereof)
• Notable exception: Microsoft middleware (de facto; not de jure or de fiat)

– Almost all MW masks heterogeneity in programming language
• Noteable exception: Java RMI

– Some MW masks heterogeneity in vendor implementations
• CORBA best here

CptS 464/564 Fall 2007 Middleware in Context: © 2007

Middleware Benefit: Transparency
• Middleware can provide useful transparencies:

– Access Transparency
– Location transparency
– Concurrency transparency
– Replication transparency
– Failure transparency
– Mobility transparency

• Masking heterogeneity and providing transparency makes
programming distributed systems much easier to do!

CptS 464/564 Fall 2007 Middleware in Context: © 2007

Programming with Middleware
• Programming with Middleware

– Do not have to learn a new programming language! (Usually)
– Use an existing one already familiar with: C++, Java, C#, Ada,

(yuk) Visual Basic, (yuk) COBOL
• Ways to Program with Middleware

1. Middleware system provides library of functions (Linda, others)
2. Support directly in language from beginning (Java and JVM)
3. External Interface Definition Language (IDL) that “maps” to the

language and generates local “proxy”

CptS 464/564 Fall 2007 Middleware in Context: © 2007

Kinds of Middleware
• Distributed Tuples: (a, b, c, d, e)

– Relational databases, SQL, relational algebra
– Linda and tuple spaces
– JavaSpaces (used by Java Jini)

• Remote procedure call (RPC)
– make a function call look local even if non-local

• Message-Oriented Middleware (MOM)
– messages and message queues

• Distributed Object Middleware
– Make an object method look local even if non-local
– CORBA
– DCOM/SOAP/.NET
– Java RMI

CptS 464/564 Fall
Middleware in Context: © 2007

David E. Bakken

Kinds of Middlware (cont.)

Middleware
Category

Communication Processing Storage

Distributed
Tuples

Yes Limited Yes

Remote
Procedure Call

Yes Yes No

Message-
Oriented MW

Yes No Limited

Distributed
Objects

Yes Yes Yes

Different middleware systems encapsulate and integrate the
different kinds of resources with varying degrees:

For many (non-database) applications, and supporting adaptation,
distributed object middleware is better because it is more general

CptS 464/564 Fall 2007 Middleware in Context: © 2007

Middleware and Legacy Systems
• Legacy systems are a huge problem (and asset) in industry

and military domains!
• Middleware often called a “glue” technology: integrated

“legacy” components
– Much distributed programming involves integrating components,

not building them from scratch!
• Middleware’s abstractions are general enough to allow

legacy systems to be “wrapped”
– Distributed objects are best here because more general
– End result: a very high-level “lowest common denominator” of

interoperability

CptS 464/564 Fall 2007 Middleware in Context: © 2007

A Middleware Layering Taxonomy (Schantz)
• Domain-Specific Services

– Services and APIs tailored to (and reusable only
within) certain domains (health care,
telecommunications, etc)

– Examples: CORBA Domain Interfaces, Boeing
Bold Stroke architecture

• Common MW Services
– Adds high-level, domain-independent reusable

services for events, fault tolerance, security,
– Examples: CORBAServices, Eternal

• Distribution MW
– Provides rich distributed object model that supports

much heterogeneity and transparency
– Examples: CORBA, .NET., Java RMI

• Infrastructure MW
– Encapsulates core OS Comm. and concurrency

services (sometimes enhances them too)
– Examples: JVM (and other VMs), ACE, group

comm.(Figure courtesy of D. Schmidt)

Outline

• Context
• QoS Basics
• QoS Properties, Mechanisms, Resources
• Other Misc. Considerations
• Backup Slides

– Issues on QoS Properites & Mechanisms & Resources
– Middleware and Distributed Computing
– Smart Grids for Distribution need good communication &

synchronized data
– Other Misc. Electricity+IT slides
– Some GridStat Details

© 2009 Washington State University Dave Bakken NASPInet QoS–44

45

Smart Grid needs better data delivery!
The SMART GRID will*:
 Enable active participation by consumers (AMI,DR)
 Accommodate all generation & storage options
 Enable new products, services, & markets
 Provide power quality for the digital economy
 Optimize efficient asset utilization & operation
 Anticipate and respond to system disturbances
 Operate resiliently against attack & natural disaster

Smart Grid applications need systematic and
pervasive wide-area data delivery services

*Source: Joe Miller, “The Smart Grid – How Do We Get There?” June 26, 2008,
SmartGridNews.com , The Modern Grid Strategy, a DOE-funded project conducted by the National

Energy Technology Laboratory

Distribution-Side Smart Grids SHOULD
exploit synchrophasors!

• Voltage instability: compare voltage angles across
transmission and distribution

• Distribution substation busbar protection
• Deciding when you can loop a distribution system
• Have no single point of failure & much better distribution

substation value error checking
• Solve power quality problems: record event to microsecond

so correlated with lightning, transmission switching,
customer load switching, …

• Sources:
– Dr. Ed. Schweitzer, ed@selinc.com
– Dr. Armando Guzman, Armando_Guzman@selinc.com

© 2009 Washington State University Dave Bakken NASPInet QoS–46

Outline

• Context
• QoS Basics
• QoS Properties, Mechanisms, Resources
• Other Misc. Considerations
• Backup Slides

– Issues on QoS Properites & Mechanisms & Resources
– Middleware and Distributed Computing
– Smart Grids for Distribution need good communication &

synchronized data
– Other Misc. Electricity+IT slides
– Some GridStat Details

© 2009 Washington State University Dave Bakken NASPInet QoS–47

© 2009 Washington State University Dave Bakken NASPInet QoS–48

Rationale for Better Communications
• US Electric Power Communications System is aging

– SCADA is1960s technology
– Not updated meaningfully (no industry investment)
– Much star-connected, inflexible, slow, crude SCADA

“polling”
– Little communication between electric utilities

• Data collection has increased many fold at
substations
– Faster measurement rates, often time synchronized
– Communications not there to move this data where

needed
– Even ICCP can’t keep up with rate & other requirements

Consequences of Limited Data Exchange
• Much less visibility into system
• Greatly limits control opportunities
• Greatly limits protection opportunities

– Protection almost always limited to local data (w/in substation)
– SPS/RAS are too expensive, one-off solution

• Limits reliability: major blackout contributor
• Limits profits (!!)

– Monitoring systems that can run the system at higher load levels
(and of course hence with more profitably) are one of the “exciting
new technologies that will be tools for the future”.

Root, C. “The Future Beckons”, IEEE Power & Energy
Magazine, 4(1), January/February 2006, 24–31.

© 2009 Washington State University Dave Bakken NASPInet QoS–49

“Best” Practices (!) in Power Industry Today

© 2009 Washington State University Dave Bakken NASPInet QoS–50

• Caveat: we all have training+experience in some areas, not
all!!!!.....

• Cobble together data communications on a per-project,
piecemeal basis

• Send all data to all recipients (or single control center) at the
highest rate anyone needs it at (what else to do?)

• Use TCP/IP or web services (highly inadvisable per CS
R&D)

• Unaware of state of art in distributed computing
• Results: inflexible, not robust, expensive and over-budget

• Huge part of cost of a specialized protection scheme
(SPS)

The Writing on the Wall

• Francis Cleveland, Xanthus consulting (emphasis ours)
– With the exception of the initial power equipment problems in the

August 14, 2003 blackout, the on-going and cascading failures
were almost exclusively due to problems in providing the right
information to the right place within the right time.

• Clark Gellings, EPRI (emphasis ours)
– “The ultimate challenge in creating the power delivery system of

the 21st century is in the development of a communications
infrastructure that allows for universal connectivity.”

– “In order to create this new power delivery system, what is needed
is a national electricity-communications superhighway that links
generation, transmission, substations, consumers, and distribution
and delivery controllers.”

© 2009 Washington State University Dave Bakken NASPInet QoS–51

Grid Getting Less Stable Each Year…

© 2009 Washington State University Dave Bakken NASPInet QoS–52

• Generation and demand keeps
outpacing transmission

• New sources of energy to
integrate
• “The answer, my friend, is

blowing in the wind?”
• The problem is, too!

• Flexible, robust, and secure
data delivery services are a
mitigating gap technology

• Question for you: How long
will the industry continue these
same old “best practices”

© 2009 Washington State University Dave Bakken NASPInet QoS–53

Status Information & the Grid/CIP
• Changing requirements

– More general topology and connectivity including multicast
– New services require wider range of quantity, timeliness, …

• Situation awareness: phone calls (or FAXes) not adequate!
• 4-second SCADA cycle moving to 4 times or more per power

cycle (>800x more data)
– Existing hardwired, hierarchical structure does not suffice

• Status items may be needed at multiple locations with different
rates, latencies, & criticality (availability)

– There is increasing concern for data security
• From random hackers
• From dedicated adversaries (terrorists?)
• From disgruntled insiders

Flexibility Requirements
• Multicast (1many, efficiently)
• Heterogeneity of communication topologies
• Heterogeneity of delivery latency and delivery rate
• Temporal synchronism of rate filtering
• Heterogeneity of computing resources
• Extensibility to new kinds of computing resources
• Open architecture: easy interoperability across multiple

vendors
Tomorrow’s applications need this flexibility, too: smart grids,

advanced metering infrastructure (enabling demand
response), distributed generation (microgrids, renewables),
…

© 2009 Washington State University Dave Bakken NASPInet QoS–54

Outline

• Context
• QoS Basics
• QoS Properties, Mechanisms, Resources
• Other Misc. Considerations
• Backup Slides

– Issues on QoS Properites & Mechanisms & Resources
– Middleware and Distributed Computing
– Smart Grids for Distribution need good communication &

synchronized data
– Other Misc. Electricity+IT slides
– Some GridStat Details

© 2009 Washington State University Dave Bakken NASPInet QoS–55

© 2009 Washington State University Dave Bakken NASPInet QoS–56

GridStat Approach
• Build pragmatic, comprehensive end-to-end framework

– Extensibility & customizability are key (lots of hooks…)
– Intended to extend to capabilities & scope of large power grid

• “Outside-In” not “Inside-Out”
– lay down all the end-to-end plumbing, a la QuO

• Start with simple QoS & sub-optimal mechanisms
– Hard QoS guarantees only if we control all access points
– Provide QoS APIs & hooks to capture requirements to enable

many more optimizations and more extensive management
• Extend over time for more coverage of

– QoS guarantees
– Adaptability
– Security
With more QoS mechanisms, policy languages, validation, ….

GridStat APIs
• Pull

– A cache instance of the variable kept at each subscribe
– Subscriber can use just like a local object, when needed
– Distribution transparency

• Push
– Subscriber can register to get each update
– Good for database integration (yuk!)

• QoS Push
– Subscriber can register callback to get notified if QoS violated
– Most apps won’t use, but great for aggregation: end-to-end QoS

violation

© 2009 Washington State University Dave Bakken NASPInet QoS–57

GridStat Architecture

© 2009 Washington State University Dave Bakken NASPInet QoS–58

© 2009 Washington State University Dave Bakken NASPInet QoS–59

GridStat Architecture

QoS Requirements QoS Requirements

Pub1

PubN

Sub1

SubN

… …

Leaf QoS Broker Leaf QoS Broker

QoS Broker

SR

SR SR

SR SR

SRSR

SR
… …

Control Control

© 2009 Washington State University Dave Bakken NASPInet QoS–60

Route Allocation to Subscriber 1
QoS

broker 1

QoS
broker 2

QoS
broker 3

leaf QoS
broker 4

leaf QoS
broker 5

leaf QoS
broker 6

R

N

O

P

QA

B

D

C

E

F G

H

I

J

K

L

M

Subscriber 1
Publisher 1

Border
Status
Router

(Edge)
Status
Router

Status
Router

Key:

S

Publisher 3Publisher 2

© 2009 Washington State University Dave Bakken NASPInet QoS–61

Route Allocation to Subscriber 2
QoS

broker 1

QoS
broker 2

QoS
broker 3

leaf QoS
broker 4

leaf QoS
broker 5

leaf QoS
broker 6

R

N

O

P

QA

B

D

C

E

F G

H

I

J

K

L

M

Subscriber 1
Publisher 1

Border
Status
Router

(Edge)
Status
Router

Status
Router

Key:

S

Subscriber 2

Note: Sub2 may have a different rate, latency, or redundancy than Sub1

Publisher 3Publisher 2

Security Management System
• Defend against attacks on

confidentiality, integrity,
accessibility

• Evolve with changes in the
security field (securely
upgradeable modules)

• Constant cost end-to-end
regardless of number of
hops

• Support multicast,
redundant paths and call
backs

• Protect private utilities’
business sensitive
information

Ongoing Security Research
• Authentication is the first step towards meaningful,

secure communications
• Any amount of encryption is not useful on its own unless

participants are authenticated
• Preserve the evolvable nature of the security system,

extend it to authentication
• Sustain key material for a longer period of time without

loss of efficiency or protection
• Maintain hierarchy of control, support private utilities’

business sensitive information protection

© 2009 Washington State University Dave Bakken NASPInet QoS–64

Multi-Level Contingency Plannning & Adapting
• GridStat supports operational modes

– Can switch routing tables very fast
– Avoids overloading subscription service in a crisis

• Electricity example: Applied R&D on coordinated
1. Power dynamics contingency planning
2. Switching modes to get new data for contingency
3. New PowerWorld visualization specific for the contingency

involving contingencies with
A. Power anomalies
B. IT failures
C. Cyber-attacks

• Note: state of art and practice today: 1 & A only, offline

• A mode is a set of routing tables
– Contains forwarding rules for a bundle of subscriptions

• Every QoS broker has it own mode set and will always
operate in one of those modes

• Every status router:
– Uses as many routing tables for forwarding status events as there

are levels in the management hierarchy
– Has all routing tables defined in its ancestor scope pre-loaded in

memory (or on disk)

65

Mode Terminology

Mode Terminology

66

• Mode change algorithm: coordinator contacts a set of status
routers and informs them to switch routing tables

• Mode change algorithms with different tradeoffs
– Hierarchical mode change algorithm

• A -> B: Enables subscriptions in modes A and B to flow
• Correctness vs. performance

– Flooding mode change algorithm
• Best-effort algorithm: status router network switches modes at a future

timestamp
• Benefits from the amount of redundancy the status router network provides
• Optimal delay (shortest path)

Mode Change Algorithms

67

© 2009 Washington State University Dave Bakken NASPInet QoS–68

Data Load Shedding
• Electric Utilities can do load shedding (I call power load shedding)

in a crisis (but can really hurt/annoy customers)
• GridStat enables Data Load Shedding

– Subscriber’s desired & worst-acceptable QoS (rate, latency, redundancy) are
already captured; can easily extend to add priorities

– In a crisis, can shed data load: move most subscribers from their desired QoS to
worst case they can tolerate (based on priority, and eventually maybe also the
kind of disturbance)

– Works very well using GridStat’s operational modes
– Note: this can prevent data blackouts, and also does not irritate subscribers

• Example research needed: systematic study of data load shedding
possibilities in order to prevent data blackouts in contingencies and
disturbances, including what priorities different power apps
can/should have…

• Lets critical infrastructures adapt the data communiations
infrastructure to benign IT failures, cyberattacks, power anomalies, …

© 2009 Washington State University Dave Bakken NASPInet QoS–69

Condensation Functions

• Condensation functions allow applications to define new
derived status variables
– Sometimes subscribers just read a large set of status items

once to calculate a derived variable
– Supported by allowing user-defined condensation functions to

be loaded in status routers
– Building block for other mechanisms/capabilities

• Can be dynamically loaded into SRs (or elsewhere)

Status1

StatusN

StatusJ

Status
Router

… Condense

© 2009 Washington State University Dave Bakken NASPInet QoS–70

Overview of Other Mechanisms & Features
• Subscriber-side caching

– Can get callbacks, instead (database integration)
• Subscriber-side cache extrapolation

– Predefined primitives
– User-defined object

• Alerts
– Subscribed (like boolean status variable)
– Flooded

• Actuator RPC with safety
– Client-server request-reply delivered over multiple, one-way,

GridStat update paths
– Pre-conditions: abort call if sanity check fails
– Post-conditions: additional physical verification call succeeded

	Slide Number 1
	Outline
	NASPInet Service Classes �are really mostly QoS Categories!
	NASPInet Architecture
	NASPInet Data Bus (Data Delivery Plane)
	NASPInet Data Bus vs. Internet
	Outline
	What is QoS?
	QoS Properties/Dimensions (1)
	QoS Properties/Dimensions (2)
	QoS is “Above the Network” (End-to-End)
	Outline
	Providing QoS Properties (1)
	Providing QoS Properties (2): Mechanisms
	Providing QoS Properties (3): Mapping Down
	Outline
	Aperiodic Events
	Keeping it Evolvable over Lifecycle ($$$$)
	Resource Policies for Flexibility
	Q: What QoS Does Your NASPI App Need?
	Conclusions
	For More Info (1)
	For More Info (2)
	For More Info (3)
	Outline
	A Crucial Note on Network & Publisher Load
	QoS Properties/Dimensions (2) TRUST
	QoS-Aware Resource Management I: Many Mechanisms Give the Correct Functionality, But Are Appropriate for a Small Set of Conditions
	QoS-Aware Resource Management II: Control over Resource Allocation is Useless w/o Information on Usage Patterns & QoS Requirements
	Application-Level Adaptation Choices
	Networking Review
	Outline
	What is Distributed Computing?
	Context: (Most) Technology Marches On
	Why Middleware?
	Middleware in Context
	Middleware Benefit: Masking Heterogeneity
	Middleware Benefit: Transparency
	Programming with Middleware
	Kinds of Middleware
	Kinds of Middlware (cont.)
	Middleware and Legacy Systems
	A Middleware Layering Taxonomy (Schantz)
	Outline
	Smart Grid needs better data delivery!
	Distribution-Side Smart Grids SHOULD exploit synchrophasors!
	Outline
	Rationale for Better Communications
	Consequences of Limited Data Exchange
	“Best” Practices (!) in Power Industry Today
	The Writing on the Wall
	Grid Getting Less Stable Each Year…
	Status Information & the Grid/CIP
	Flexibility Requirements
	Outline
	GridStat Approach
	GridStat APIs
	GridStat Architecture
	GridStat Architecture
	Route Allocation to Subscriber 1
	Route Allocation to Subscriber 2
	Security Management System
	Ongoing Security Research
	Multi-Level Contingency Plannning & Adapting
	Mode Terminology
	Mode Terminology
	Mode Change Algorithms
	Data Load Shedding
	Condensation Functions
	Overview of Other Mechanisms & Features

