

#### **The Standards Based Integration Company**

Systems Integration Specialists Company, Inc.

# NASPInet and migration towards the use of IEC standards

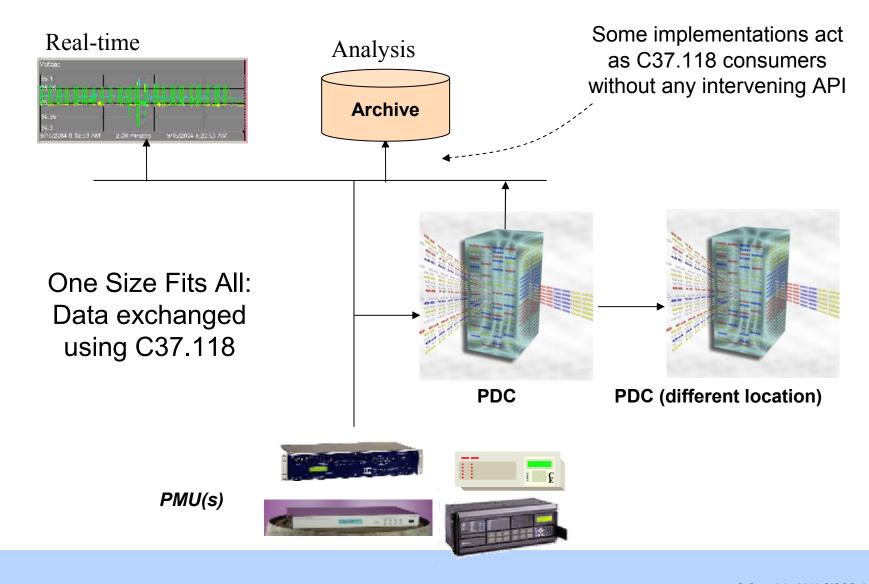


October 5<sup>th</sup> 2010
John Gillerman



#### Introduction

- The IEC TC 57 is producing standards that will be useful for the construction of NASPInet
  - WG 10: IEC 61850
  - WG 13: Common Information Model and related standards
- WECC and NYISO (among others) have to deliver a demonstration NASPInet in a little over two years.
- What is the process for migration to NASPInet in the future?
  - What do the harmonization the C37.118 / 61850 and the IEC Common Information Model standards do for synchrophasors and NASPInet




# Develop strategy for NASPInet implementation

- If you had to build a working NASPInet by 2012, what is available off the shelf now that can be used?
- What do we need to do now to minimize migration efforts to include the IEC standards later?
- Plan for incorporation of C37.118/61850 harmonization and the CIM standards by 1<sup>st</sup> quarter 2014



#### **Current Reference Architecture**





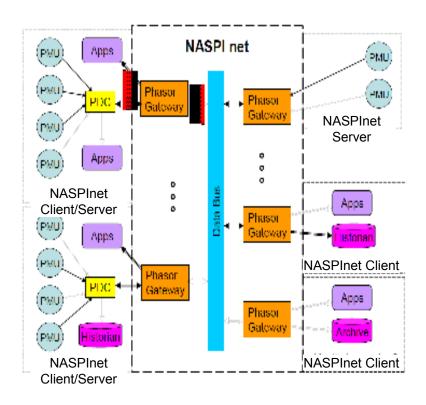
#### Issues with C37.118 in a Substation

- Not readily integrated with substation automation and protection
  - Single purpose data semantics and wire protocol. Existing substation automation protection equipment cannot receive C37.118.
  - Only specifies the use of TCP or UDP.
    - □ Can't control QoS. Consequently, phasor data transmitted using C37.118 cannot be used for reliable system protection.
  - Only supports data streaming and not report by exception
    - □ This means that protection related data can be delayed by up to the C37.118 transmission period (at least 16 ms typically)



#### Issues with C37.118

- No standard way to describe a PMU in IEC 61850 Substation Configuration Language (SCL). Consequently no way to configure a system off line in a substation engineering tool.
- Miscellaneous protocol issues
  - There are numerous error handling issues that need to be resolved.
     Consequently, C37.118 cannot be described as a highly reliable protocol.
  - Quality and Timestamp loose meaning when C37.118 streams are aggregated and then split up
- No means of reliable delivery
- Security C37.118 does not have security built in
  - Fine grained RBAC required down to the individual measurement
- Filtering one cannot receive only selected items of interest using C37.118
  - Topic based subscriptions are needed
  - Should be able to filter on where in the network the PMU data is from




#### Issues with Current Reference Architecture

- Types of data –NASPInet will eventually need to support exchange of other data including but limited to:
  - Historical phasor data
  - COMTRADE files
  - Alarm/events data
  - Network model configuration data
- No context to data Phasor data without the context of network/device data has limited value
  - NASPInet should be integrated using a common device/network models such as IEC 61850 and/or IEC 61970 Common Information Model (CIM)



# Proposed TC 57 Based Approach



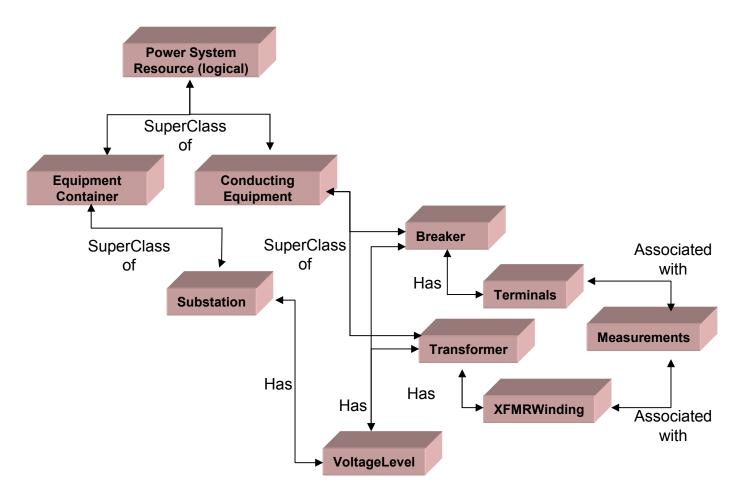
- Use IEC 61850 to carry phasor data over a wide area using a multicast profile that supports QoS. Event driven exchange also supported.
- Use proposed model driven IEC 61970 OPC UA Web Services to expose phasor data within CIM Views and for NASPInet system configuration and monitoring



# Benefits Of Using IEC 61850 for PMU data

- More easily integrated with other substation and SCADA equipment
  - Common names and protocol
  - Common configuration files (Substation Configuration Language XML)
- Built in security.
- Enables standard mechanisms for handling reliable transfer and QoS
- Standardized names for device data based on device functional modeling
- Can use Event Driven Architecture if desired.
- IOP demos and testing

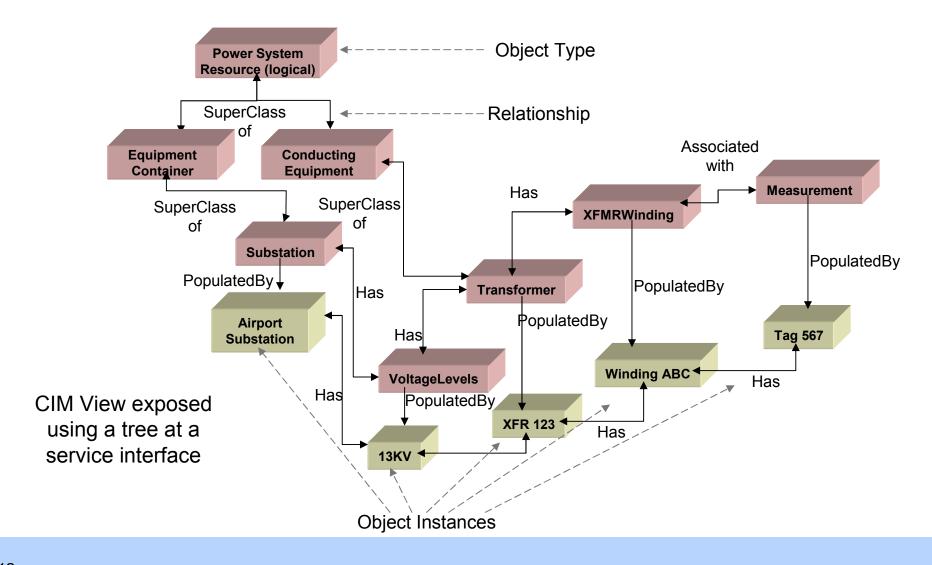



# Using IEC 61970 To Exchange Non Phasor Data

#### IFC 61970 consists of:

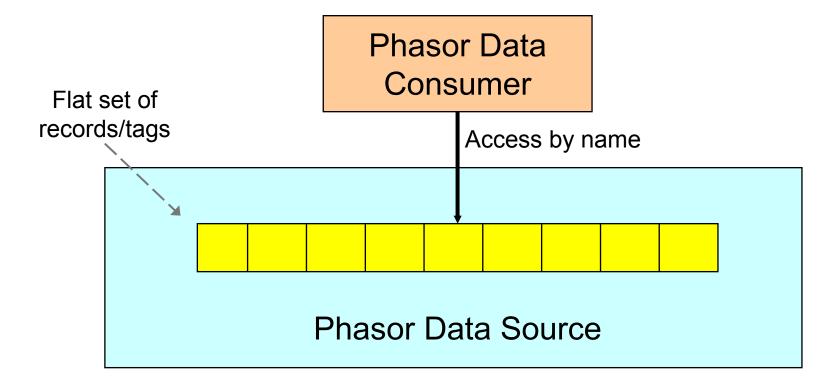
- Common Information Model (CIM): A standard way to model power system networks.
  - Use of the CIM allows utilities to share how PMUs connect to the power system
  - CIM model exchange has been IOP tested 12 times. Vendors included GE, Siemens, ABB, Areva, SISCO, and others
- A set of services for exchanging CIM
  - Use of the proposed IEC 61970 OPC UA Web Services provides a common mechanism for sharing CIM data
  - These services are not recommended for exchange of current PMU data
  - The IEC 61970 services are generic and can be used to exchange registry, historical phasor data, alarms, and hierarchical views of a power system model. Can be also used to exchange NASPInet configuration and network monitoring data




#### What is the IEC 61970 Part 3 CIM?



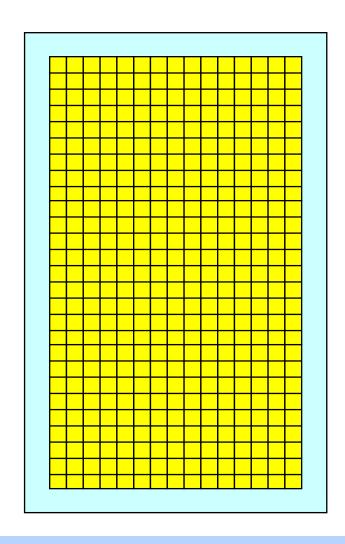
The IEC 61970 CIM describes power systems and can provide context for PMU Data

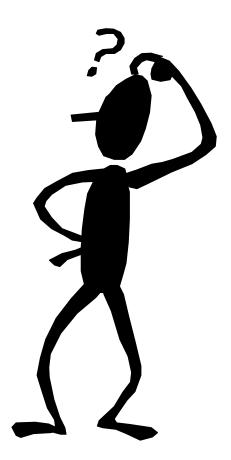



#### **CIM Views**





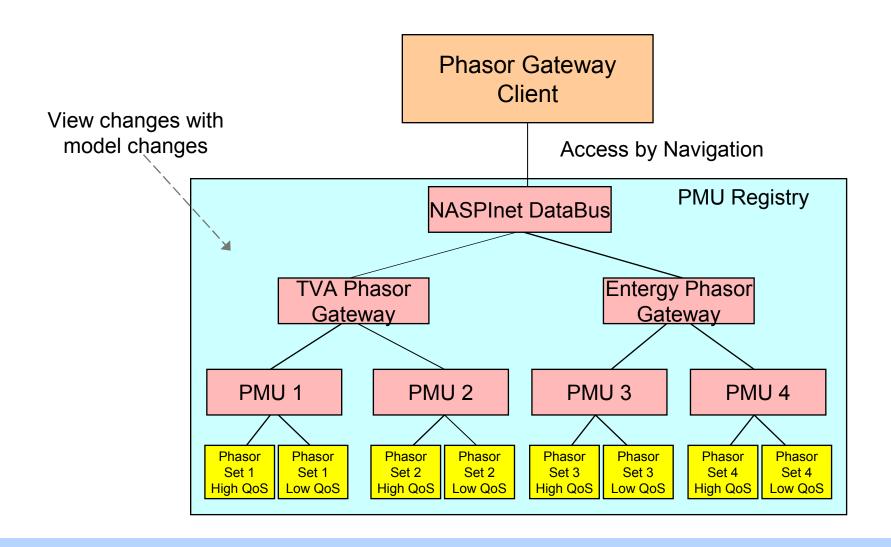

#### C37.118 Flat View of Phasor Data




A typical web service interface also only exposes the names but does not show how data is related to a power system



# Accessing by Name






I need the voltage phasor for the Reynard substation 500kV bus



#### PUM Data Within The Context Of A CIM View





# Benefits of Model Driven Access of PMU and Data Bus Configuration Data

- CIM Views give context to instance data improving understanding and productivity.
- The information contained in a CIM View enables automated discovery of available information e.g. automation of setup and maintenance tasks
- CIM Views used as:
  - Topic Tree for alarms and events
  - Phasor data integrated with PMU Registry/Data Bus configuration data



#### IEC TC 57 Based Architecture

- Use IEC 61850 multicast current phasor data
- Use IEC 61970 OPC
   UA for non phasor data
   such as registry data,
   historical phasor data,
   alarms, and network
   model data as well as
   for NASPInet Data Bus
   Configuration.
- Use OPC API to abstract data suppliers and applications from the particulars of the NASPInet database protocols and services (except into archive)

Real-time Historical **NASPInet Data Bus** Phasor Gateway

For traffic inside and between substations as well as substations to control centers, use C37.118/IEC 61850 between PMUs, PDCs as well as to the Phasor Gateway for Class A - B

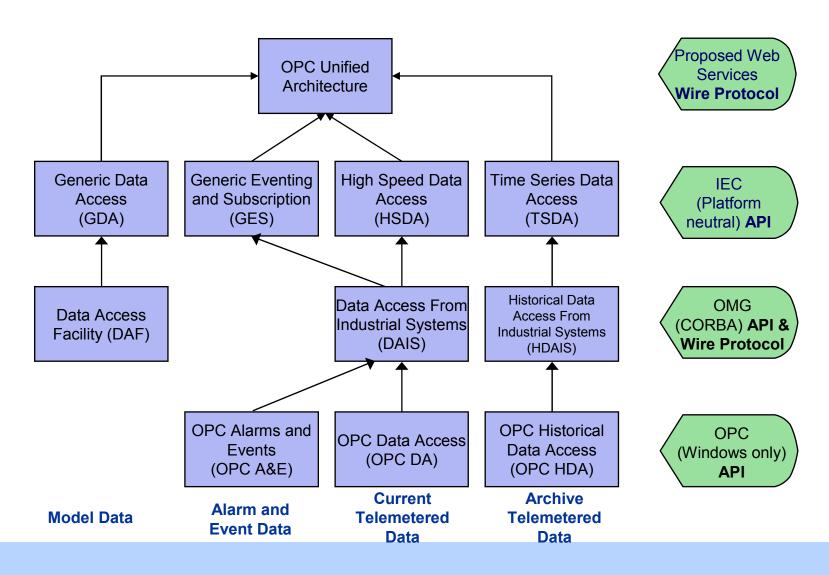


### IEC TC 57 Based NASPInet Stack

**Application Programming** Interface

IEC 61970 API (OPC) can support setting QoS parameters

**Archive may implement** C37.118/IEC 61850 interface natively


|  | Application                                          |                                  |
|--|------------------------------------------------------|----------------------------------|
|  | IEC 61850<br>GOOSE and SV                            | IEC 61970 OPC UA<br>Web Services |
|  | Transport Layer<br>(UDP)                             | Transport Layer<br>TCP           |
|  | Network Layer IP Multicast  Data Link Layer Ethernet |                                  |
|  |                                                      |                                  |
|  | Phasor Data over profile of                          | Non Phasor<br>Data over IEC      |

over profile of IEC 61850

61970 Web Services



# IEC 61970 Service Names And Lineage





# Using An API to Enable Migration

Phasor Data Applications

OPC API (or cross platform version)

C37.118 Registry Services

PDC/PMU Registry

Migrate

**Phasor Data Applications** 

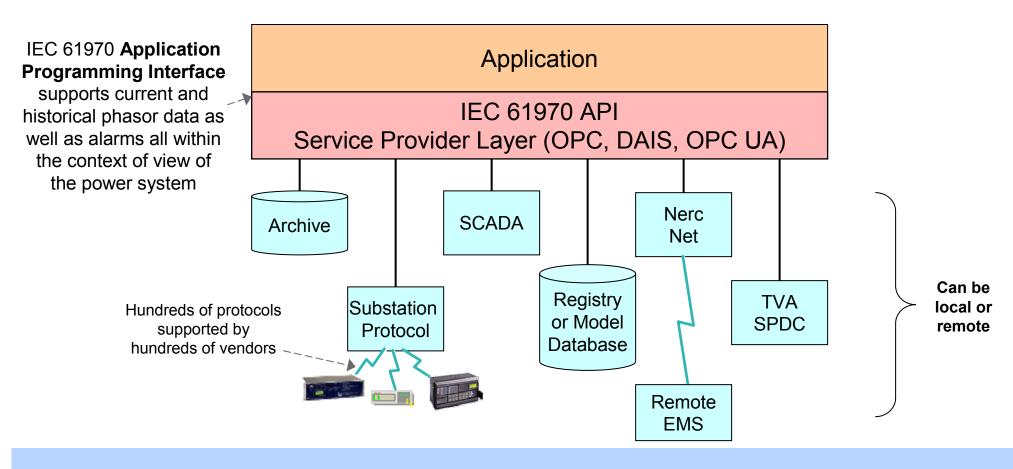
OPC API (or cross platform version)

NASPInet based on IEC 61850/CIM standards

OPC API (or cross platform version)

PDC/PMU

Registry




#### **IEC 61970 API**

- Implemented in many products (1,000s) by many companies (100s)
- Widely implemented in substation products
- Deployment neutral same API used for local and remote communication
- Can be used to set up pub/sub of PMU data even though IEC 61850 and C37.118 can be used as the wire protocols for PMU data



#### Off the Shelf API Reuse





# **Approach**

- SISCO believes that in the longer term, NASPInet must be fully integrated with EMS and Substation Automation
- For this to happen, reuse of standards such as IEC 61970 Common Information Model and IEC 61850 is critical
- Don't hard code C37.118 or the existing Registry Services into phasor data applications
- Use OPC API as a way to enable migration to IEC 61850 protocol and CIM based registries.



#### Thank You!

John Gillerman Systems Integration Specialists Company, Inc.

Phone: 732-979-9595

email: johng@sisconet.com