

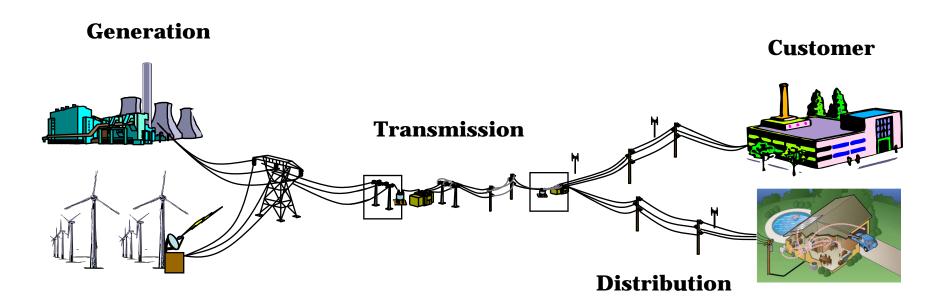
A Discussion of

SCE's General Rate Case Testimony

Main Themes of SCE's Argument

- Managing modern electricity systems is becoming more complex
 - Operations before and after restructuring
 - Market and environmental issues
- Existing operational tools are inadequate
- Increasing cost and potential for failure
- Synchronized phasor measurement systems basics
- Funding requirements and project management
- Industry and policy support for SPMS

Market and Environmental Realities


- Decreasing capacity margins due to load growth and lack of new transmission infrastructure
- Increasing demand for electricity, reliability and power quality
- Historic difficulty in funding, permitting and siting transmission and distribution facilities
- Certain generating assets are preferable to others

Interoperability from the Generator to the Customer

Existing Operational Tools Are Inadequate

- Operators do not have tools to determine system stress and proximity to instability or potential collapse
 - *Cite the U.S. Canada Power System outage Task Force Final Report on the August, 14, 2003 Blackout*
- Operators do not have wide area visibility beyond their service territory boundaries
 - *Cite the U.S. Canada Power System outage Task Force Final Report on the August, 14, 2003 Blackout*

Existing Operational Tools Are Inadequate

- Many entities are collaborating in conducting extensive RD&D into phasor measurement capabilities with positive results
 - *Cite the creation of EIPP and NASPI, DOE- and CECfunded efforts*
- Deploying base phasor infrastructure and systems may already have a positive NPV for electric service provider customers
 - Cite the California Energy Commission Phasor Measurement Application Study

Increasing Cost and Potential for Failure

- The Northeast Blackout impacted over 50 million people, costing about \$1 billion per day
 - *Cite FERC Staff Preliminary Assessment of NERC's Proposed Mandatory Reliability Standards*
- Florida blackout causes approximately 3 million people to lose power
- From 1960 to 1996, North America had experienced two system wide outages. From 1996 to 2004, the number has increased to five
 - Cite SCE General Rate Case

Additional and Future Benefits

- Operation closer to the margin with exact measurements
- Improvements in power transfer capabilities and contingency response options
- Real-time automation of system reliability and enhancement assets (e.g. SVC and RMR capacitor banks)
- Improved study capabilities for planning and operations

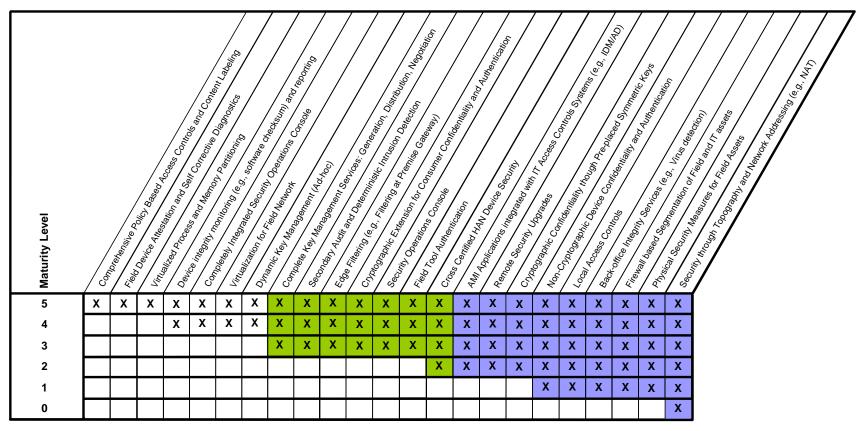
Funding Request and Project Management

- Hardware costs for PDC's and support equipment - \$5 million*
- Software costs, including integration with the energy-management system \$15.5 million*
- Infrastructure upgrades for hardware installations and communications - \$9 million
- Other labor costs \$4.5 million*

*Estimates based upon recent EMS project costs

AMI Security Approach July 18, 2008

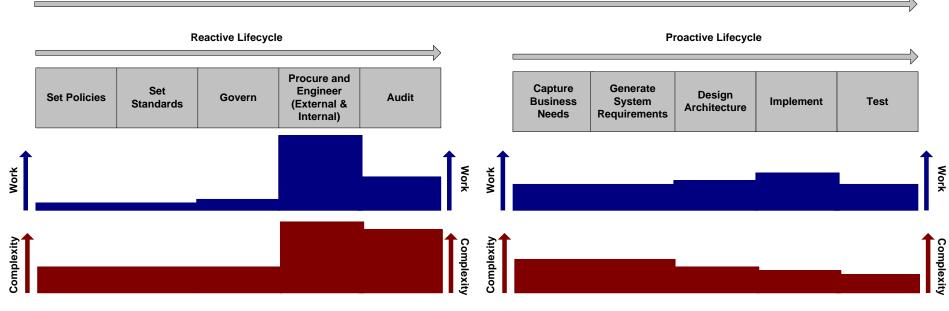
Initial Analysis


- Recognition of the problem
 - AMI touches every consumer
 - AMI is a command and control system
 - AMI has millions of nodes
 - AMI touches almost every enterprise system
- Recognition of the state of the industry
 - Inadequate vendor RFI and RFP response
 - No best practices or standards
 - TCM confirmed industry delta

Technology Capability Analysis

AMI Technology Capability Maturity (TCM) Security Framework

Approach


- Frame and Scope the problem
 - What are we trying to secure?
 - What are the constraints?
 - What can we reuse?
 - What can we borrow from other industries?
- Approach
 - Use basic system engineering principles
 - Use abstraction for complexity management
 - Define requirements
 - Decompose requirements and functions
 - Allow for performance and constraint tuning
 - Tailor for engineering process for security
 - Introduce risk driven requirements process
 - Introduce concept of robustness

System Engineering Benefits

UIA

Benefits

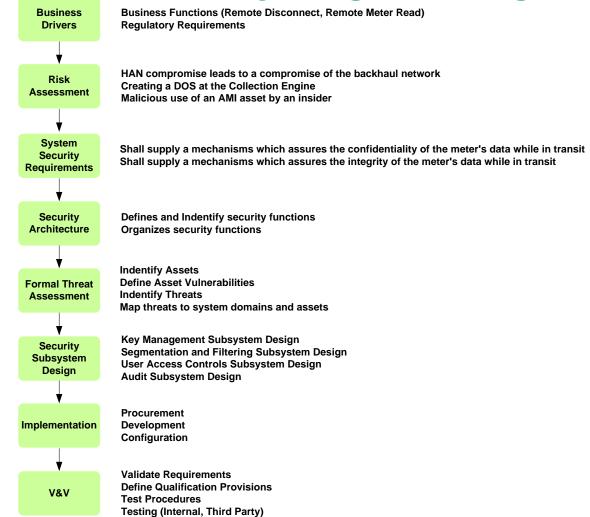
- Low staffing requirements during first few lifecycle phases
- Minimal engineering expertise required in early phases (e.g., Policy by management edict)

<u>Risks</u>

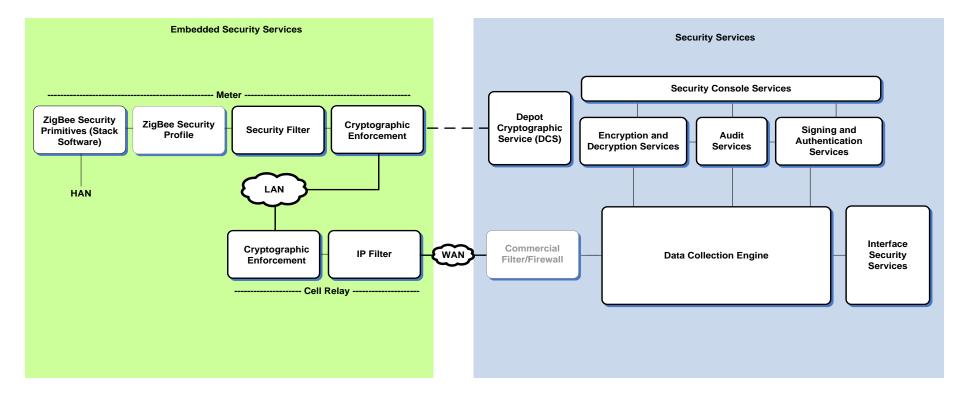
- No clear mechanisms for applying technology standards and policies
- Requires a separate audit and assessment phase
- Low confidence in adherence (Comprehensive auditing near impossible)
- Program artifacts are self contained (no reuse)
- Implementations success based on individual contribution

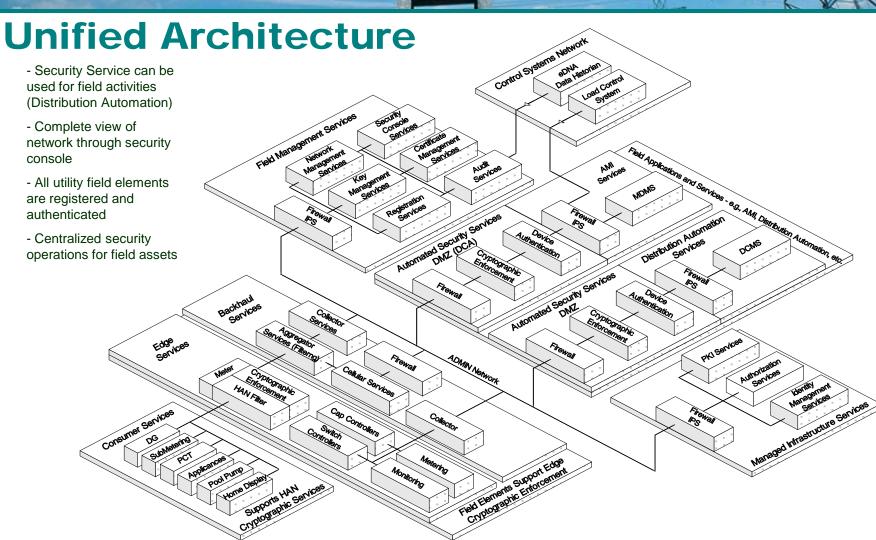
<u>Benefits</u>

- Guarantees business value (all work is aligned to business process automation and business needs
- Strong binding between each lifecycle phase
- Compliance Framework is built-in to the model
- Program implementation risk are reduced significantly
- Program implementers have large body of predecessor work (generates day one value)


<u>Risks</u>

- Engineering expertise required in beginning of lifecycle
- Failures ripple through system


System Security Engineering



System Security Architecture

Back-up slides and drawings Rate Case presentation

2008 NASPI Task Team Deliverables

- Research Information Task Team database documenting all RD&D activities and publications
- Business Management Task Team white paper on arguments supporting phasor deployment in funding proceedings

SCE Prior to Industry Restructuring

- For nearly a century, SCE planned and operated its system as a vertically-integrated electric utility
- Integrated planning (generation, transmission and distribution) provided for future capacity margin and safe, reliable power delivery
- Integrated operations provided ample means to act quickly and decisively to mitigate system events and economically maintain assets

SCE After Industry Restructuring

- SCE no longer operates a majority of the interconnected generation resources
- Disintegrated planning places decision-making in the hands of many market participants with differing goals and objectives
- Various market participants make operating decisions, based upon entity specific needs

Phasor Measurement System Basics

- SPMS's function by continuously collecting measurements on voltage, current, frequency and phase angle from many points on a system
- Measurements are time-stamped with GPS or other precise time information
- Data is compiled and stored in a computer system for continuous analysis and future study
- Information is displayed for system operators for decision-making

Documents and Entities Supporting the Integration of Phasor Technologies

- Energy Independence and Security Act of 2007
- Energy Policy Act of 2005
- The U.S. Department of Energy (DOE)
- Federal Energy Regulatory Commission (FERC)
- National Electric Reliability Council (NERC)
- California Independent System Operator (CAISO)
- California Energy Commission (CEC)
- Western Electricity Coordinating Council (WECC)
- NASPI and EIPP

Back-up slides and drawings Security Presentation

Accomplishments

- Capabilities
 - Patent (AMI Security Methods)
 - System authenticates and manage 30+ million nodes
 - All cryptographic methods are compliant with NIST
 - Security methods are very fast
 - Meters and aggregators have programmable filters
 - System supports a set rich audit services

Industry Leadership

- Lead several ZigBee Alliance related security activities
- Working with several academic institutions on next generation security methodologies (e.g., University of Illinois, CalTech, CMU)
- Designed security for CEC's title-24 Programmable Communicating Thermostats
- Lead and present at several industry events (e.g., DoE, CEC)
- Lead several standards activities (IETF, ANSI, IEEE, IEC, UCA)

Documentation Requirements

AMI Security Documentation

	Field Assets			Data Center Assets		
AMI Security Domains	Home Area Network	Meter	Communications	AMI Network Automated (DCA)	AMI Network Managed (DCA)	AMI Operations (MDMS + Enterprise)
Product Development	OpenHAN (requirements)					
		External Security Engagements (e.g., AMI-SEC artifacts)				
		Internal SCE AMI Security (architecture, requirements, whitepaper, etc.)				
			AMI Secu	rity Patent		
	Meter/Communication Vendor Integration (IRS)					
	ZigBee Alliance Security WG Engagement Documentation (architecture, profile, cluster)					eMeter Security Integration
						(IRS)
				Internal SCE Security Workshop		
	Knowledge Domain: Comp	uter Security (COMPUSEC)		Knowledge Dom	ain: Information Technology	Security (ITSEC)
	Knowledge Domain: Communications Security (COMSEC)					
Operations and Support			3rd Party Integration (logisti	cs, registration, certification)		
			Testing and Valida	tion (internal, IV&V)		
			User Training (admin, field tech, etc.)			
			Security Operations (usag	e, policies and procedures)		
			Compliance	(e.g., NERC)		
0						