

Application of phasor measurement units and wide-area measurement systems in Finland Katariina Saarinen, Fingrid

North American SynchroPhasor Initiative Working Group Meeting June 8-9, 2010, Vancouver, British Columbia

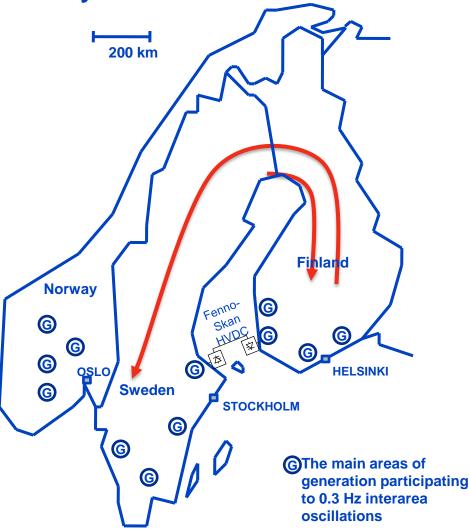
Contents

- Short introduction to the Nordic Power System
- Background for the Wide Area Measurement System project in Finland
- Structure of Finnish WAMS
- Application of WAMS and PMUs in Finland

The Nordic Power System

2008	Consumption TWh	Generation TWh	Maximum system load MWh/h
Denmark	36.1	34.6	6.4
Finland	87.0	74.1	13.8
Iceland	16.6	16.6	2.1
Norway	128.9	142.7	21.6
Sweden	144.1	146.0	24.5
Nordel total	412.7	414.0	63.1 ⁽¹

¹⁾ simultaneous maximum


8.6.2010

Source: Nordel Annual Report 2008

NGRID

- voltage stability limits power import from Sweden
- damping of 0.3 Hz interarea electromechanical oscillations limits power export to Sweden
- → normal operation within N-1 margin from stability limits

Increasing the capacity of the Finnish 400 kV grid

Measures taken to increase the capacity of the existing grid **with 50...100%**:

 Proper tuning of power system stabilizers (PSS) on large generators and HVDC links
 ✓ 7 generators and 2 links tuned

 Series compensation (SC) of critical transmission corridors

 \checkmark 9 capacitor banks installed

Installing an SVC close to the strongly oscillating generators

 \checkmark SVC installed and POD in use

SVC

SC

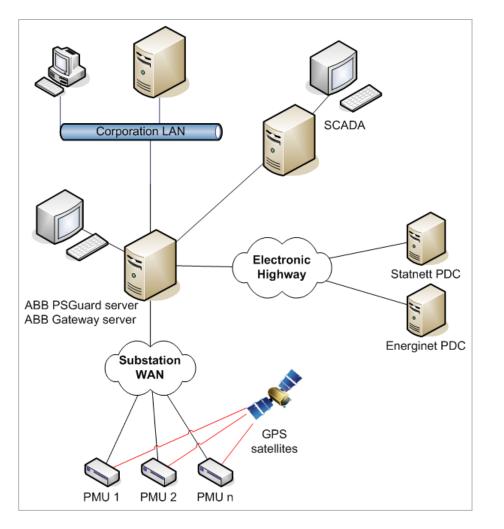
Next step: Power oscillation monitoring

Vision in 2005:

"Traffic lights in the control room to tell if damping is insufficient."

Nordic WAMS

In June 2006 the Nordic TSO's agreed to develop and implement a Nordic WAMS.


Status in 2010:

- Over 20 PMU's installed
- Three Phasor Data Concentrators
- PDC data streaming:
 Norway ↔ Finland
 - $Denmark \leftrightarrow Finland$
- IEEE 1344-1995 and C37.118 protocols in use

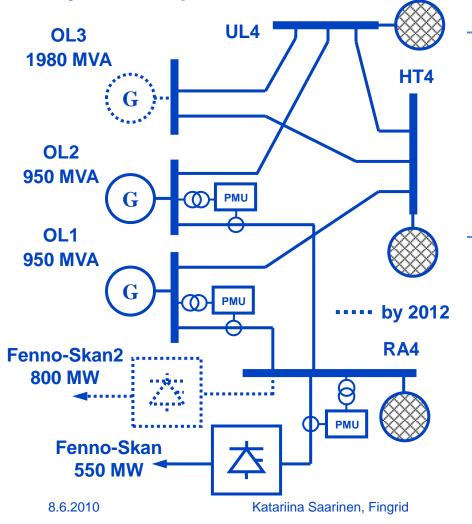
Fingrid WAMS

12 Phasor measurement units

- 5 x ABB RES521
- 7 x SEL-451
- sampling rate: 50 samples/s

ABB PSGuard system

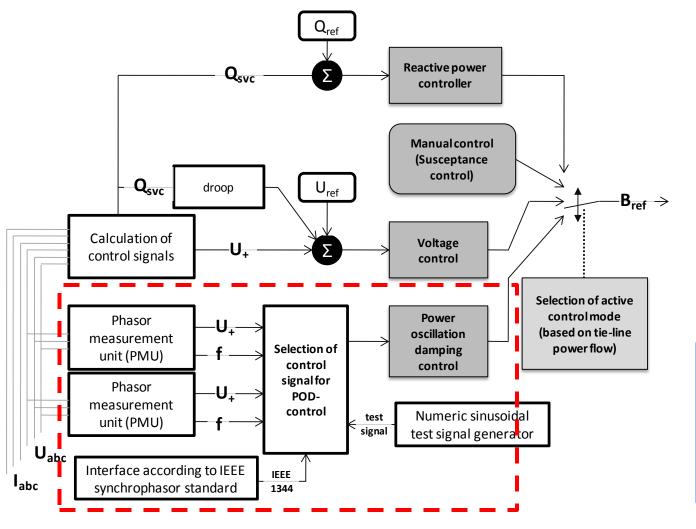
- Power Oscillation Monitoring
- Phase Angle Monitoring
- Gateway server for data streaming in/out
- Continuous and event based archiving of selected signals

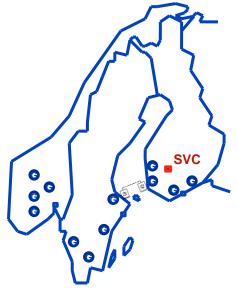


Applications on PMU's & WAMS in Fingrid

- Power oscillation monitoring
- Post-disturbance analysis and model verification
- Application of synchrophasors for power oscillation damping controls
- Analysis of damping of subsynchronous oscillations

Estimation of subsynchronous damping using synchrophasor measurement

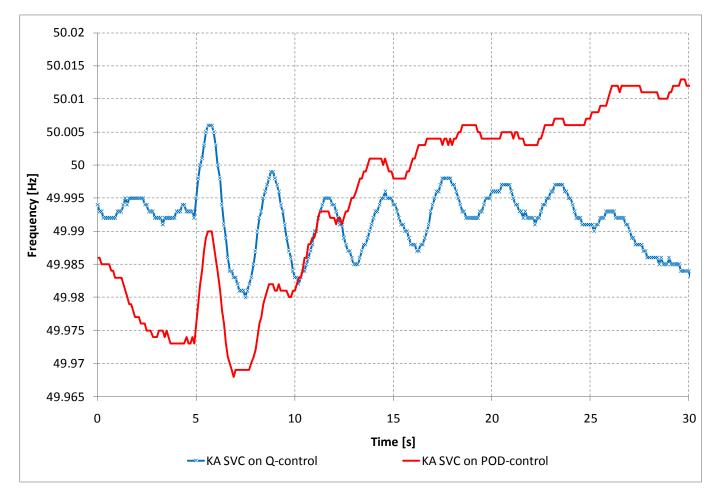

NGRID



- at planning stage risk related to
 damping of subsynchronous
 oscillations must be evaluated
 - however, no torsional measurement system available
- PMUs allows detection of subsynchronous oscillations up to 20 Hz (acc. Nyqvist up to 25 Hz)
 - damping estimation using analysis of post-disturbance recordings
 - → level of total subsynchronous damping can be evaluated

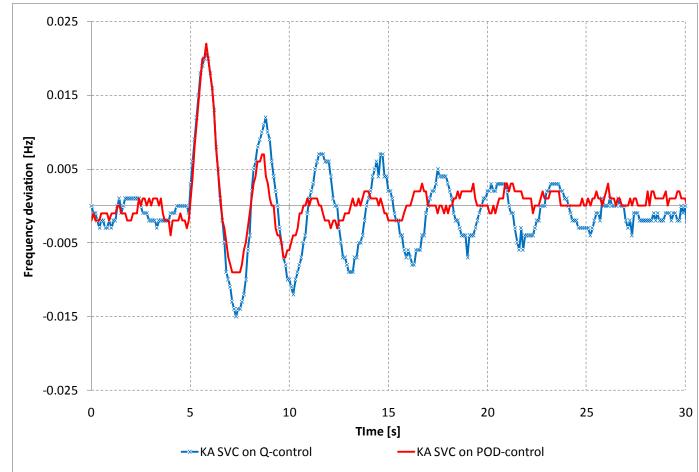
PMU-based POD control of Kangasala SVC

Local PMU measuments so far, possibility for widearea POD in the future


8.6.2010

Katariina Saarinen, Fingrid

Staged tests to verify the performance of PMU-based POD


Damping in local frequency measurements (Finland)

FINGRID

Damping based on WAMS-signal ("Helsinki - Oslo" frequency)

R&D in power oscillation monitoring

- Evaluation of feasibility of on-line damping estimation methods in 2005
- Development of wavelet-based real-time estimation method since 2006 in close co-operation with Helsinki University of Technology, TKK
- Benchmarking of different methods with TKK, ABB and London Imperial College since 2007

What is difficult in power oscillation damping estimation?

- ambient vs. transient oscillations
- accuracy
- variation in results
- length of the time window
- implementation of a commercial method may be unknown
- parametrization of the algorithm

Vision for power oscillation monitoring at the moment?

Lesson learned: It's a lot more than just bringing the signal in to the control room....

Damping estimation method must be absolutely reliable. Challenges:

- need for extensive testing and evaluation of damping estimation methods
- feasibility of the estimation methods in different situations
- combination of input signals and estimation methods will be needed
- simple but informative visualization

More information

- K. Uhlen, S. Elenius, I. Norheim, J. Jyrinsalo, J. Elovaara, E. Lakervi, "Application of Linear Analysis for Stability Improvements in the Nordic Power Transmission System", IEEE/PES General Meeting, Toronto, July 2003.
- S. Elenius, K. Uhlen, and E. Lakervi, "Effects of controlled shunt and series compensation on damping in the Nordel system", IEEE Trans. Power Systems, vol. 20, No. 4, Nov. 2005.
- S. Elenius, J. Jyrinsalo, S. Joki-Korpela, "Transmission capacity increase by retuning power system stabilizers", CIGRÉ 2004 SESSION, Paris 29th Aug. 3rd Sep. 2004.
- J. Turunen, M. Larsson, P. Korba, J. Jyrinsalo, and L. Haarla, "Experiences and Future Plans in Monitoring the Inter-area Power Oscillation Damping," in Proc. 2008 IEEE Power Engineering Society General Meeting, 8 pp.
- J. Turunen, T. Rauhala, and L. Haarla, "Selecting Wavelets for Damping Estimation of Ambient-excited Electromechanical Oscillations", Accepted to IEEE Power & Energy Society General Meeting. 2010.
- T. Rauhala, K. Saarinen, T. Kaukonen.. "On Applications and Quality of Subsynchronous Frequency Components Extracted from Phasor Measurement Unit Measurement Data", Paper C2-102, Cigre Session 2008, Paris, France.
- T. Rauhala, M. Lahtinen, H.Kuisti, J. Peltola, P. Halonen . "Static Var Compensator enhancing the operational reliability of Finnish transmission network", Paper B4-206, Cigre Session 2010, Paris, France.
- Rauhala T., Järventausta P.. "Testing the Quality of PMU Output Data Based Subsynchronous Damping Analysis in Real-Time Simulation Environment", The 7th International Conference on Power Systems Transients IPST-2007. Lyon, France.
- Rauhala T., Saarinen K., Vuorenpää P. and Järventausta P.. "Determining Subsynchronous Damping Based on PMU Measurements from Finnish 400 kV Transmission Network". IEEE Powertech 2007, Lausanne, Switzerland, July 2007.