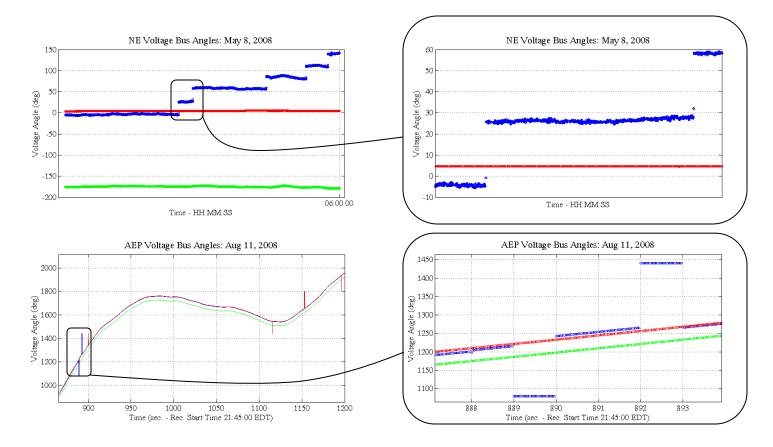
Phasor Data Validation and Error Correction Across Power Grid

NASPI Meeting, Arlington, VA

October 6, 2010

Joe Chow, Hassan Ahmed Rensselaer Polytechnic Institute

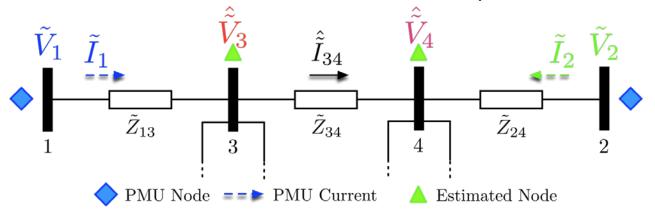

Luigi Vanfretti Royal Institute of Technology, Sweden

Phase Angle Errors in PMU Data

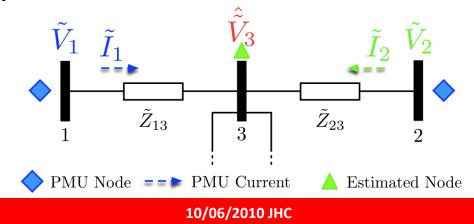
- We have worked with phasor data from over 30 PMUs and have the following observations.
- Voltage and current magnitude data are quite accurate (~1% error).
- Voltage and current phase angle errors occur in some PMUs
 - "Random" jumps of 7.5 degrees or integer multiples of it, followed by resets at a later time
 - Slew/ramp with periodic resets (not the 180 deg wrap-around situation)
- The errors are attributed to
 - Wrong phase connection to a PMU: a constant bias, trivial to correct
 - Signal processing algorithms used in the PMU: off-nominal frequency values and phase-lock loop implementation
 - Error with time synchronization: GPS clock signal overload and loss of GPS signal
 - Delays due to instrumentation cables and filter time constants

Phase Errors Observed in PMU Data

Persistent, random, and drift errors in PMU phase data

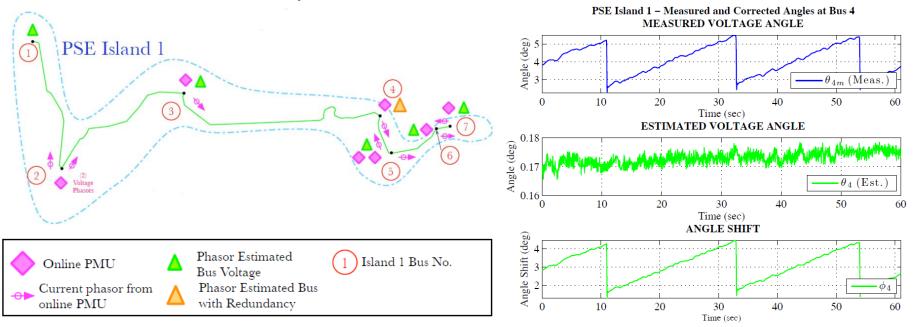


Phase Angle Error Detection and Correction


- Need a sufficient number of synchronized PMU voltage and current phasor measurements
 - Observability: all non-PMU bus voltage and line current phasors in a power network can be calculated from the PMU data
 - Redundancy: all non-PMU bus voltage phasors can be computed from two independent sets of PMU measurements.
- Observation
 - If an angle error exists in one phasor quantity from a PMU, then the same error occurs in all the other phasor quantities from the same PMU.
- Approach
 - The common phase error makes it possible to assign a bias variable for each PMU and correct for it as an optimization problem.
 - It is important that the optimization problem is formulated in the polar coordinates, because the magnitude and phase are assumed to be largely decoupled variables.
 - A phasor-only state estimator has been developed.

Observability and Redundancy

• Buses 3 and 4 are observable: their voltage phasors can be computed from the PMU data at Buses 1 and 2. Also the line current between Buses 3 and 4 can be computed.



• Bus 3 is redundant: its voltage phasor can be computed independently from the PMU data at Buses 1 and 2.

Example: Phase Error Correction

Phasor-only state estimator (PSE) capable of error correction given measurement redundancy

- Advanced development network topology inference, loss of PMUs, ...
- To establish clear visibility of all HV bus voltage phasors and line current phasors across multiple control regions, in EI and WECC