

PJM SynchroPhasor Technology Deployment Project System/PMU Requirements

(DOE ARRA Project)

NASPI Work Group Meeting February 24-25, 2010 Austin, TX

Mahendra Patel Applied Solutions, PJM

PJM©2010

- □ Uniform 30 Phasors per Second reporting rate throughout the system
- Practical archival system with data not aligned by PDC in real-time retrieved from local storage & archived with additional arrival time-tags
- □ PMU/PDC and System performance & inter operability to be verified by tests
- Systems to maintain and provide logs, performance and other diagnostic information

System Requirements

Substation Synchrophasor Measurement Devices/ systems

- SynchroPhasor measurements in compliance with IEEE Std.
 C37.118 Level 1
- Reporting in compliance with C37.118
- Additional Dynamic Performance of measurements to comply with specified responses under step response, frequency ramps and modulation tests

Time Synchronization Requirements

All data recorded shall be in the Coordinate Universal Time (UTC)

A

- The PMU shall be able to automatically switch to local clock in case of loss of GPS signal, and resynchronize automatically when GPS signal is available
- Data stream shall indicate whether it is using GPS clock or local clock
- Accuracy of time synchronization & resolution shall be equal or under 1 micro second

'Local Storage' requirements

- **Substation PDC!**
- Local Storage – 2 weeks!
- □ Data retrieval system

- □ Total Latency : 100 mS
- □ 50 mS from time tag to Phasors streaming out of TO router
- □ 30 mS for Measurement device, rest for TO communication/PDC(s)
- □ 50 mS for MPLS network & PJM PDC

Additional Requirements

PJM©2010

Registry – will also include Time Synchronization Information

Plan to develop recommendations for Upgrade/Maintenance/Calibration system

□ In Future:

Where possible, State Estimation using (only) SynchroPhasor data

- For bad data rejection
- Fill in missing data (with proper identifiers)

Explore ways of incorporating other IED and Other Controls and events data

What's Missing:
Synchrophasor Measurements at Generator Terminals

Near-Term Applications

□ Situation Awareness:

Base-lining studies Effects of Reactive Resources Effects of Simultaneous Transfers

Investigate Synchrophasors Signatures during Cascading Outages (Simulations based)

□ Congestion Management (Voltage Stability Limits)

□ Events Analysis/ Model Validation

PMUs

 SynchroPhasor measurements in compliance with IEEE Std. C37.118 Level 1

& Additional Dynamic Performance requirements (not yet in the standards)

Total System Latency not to exceed 100 mS