

Oscillation Monitoring System at TVA

Mani V. Venkatasubramanian Washington State University Ritchie Carroll Tennessee Valley Authority

NASPI Meeting, Sacramento, June 2009

ĪVA

Project Team

• WSU:

 Guoping Liu, Qiang Zhang, Ran Xu, Jaime Quintero, Mani V. Venkatasubramanian

• TVA:

Ritchie Carroll, Gary Kobet, Lisa Beard, Ryan Zuo

Oscillation Monitoring System (OMS)

 Goal of Oscillation Monitoring System (OMS)

WASHINGTON STATE

UNIVERSITY

 Early detection of poorly damped oscillations as they appear

IVA

- Trigger warning or control signals
- OMS is made possible by wide area PMU Measurements
 - Growing numbers of PMUs across the power grid
 - Real-time applications needed
 - Prototype implementation at TVA since 2007
 - Local and inter-area oscillations can be detected

Small-Signal Stability

Positive damping

Oscillations damp out

Negative damping Growing oscillations

TVA

Small-signal Instability in WECC

TVA Cumberland event

Source: Gary Kobet/TVA

Motivation

- Oscillations at Cumberland plant 9/18/2006
- PMU recordings enabled the analysis
- Local 1.2 Hz mode changed from +1.5% damping to -0.2% damping and back to +1.5% damping during the event
- PSS installed at the plant subsequently in early 2007
- PMU based real-time alarm coded by TVA engineers into TVA PDC as back-up measure – uses standard deviation thresholds

Oscillation Monitoring System

- PSERC projects on real-time oscillation monitoring and control from 2002 to 2008
- Follow-up project from TVA for prototype testing at TVA since 2007
- Recent project from BPA and EPG (CEC and CERTS) on incorporating the event analysis engine of OMS into RTDMS
- Real-time code tested at TVA speed and memory requirements critical
- Focus on scalability

OMS Engines

• Event Monitor Engine

- Automated Prony type analysis of oscillatory ringdown responses
- Five seconds of PMU data analyzed every one second

• Damping Monitor Engine

- Automated analysis of ambient noise data
- Four minutes of PMU data analyzed every ten seconds

Complementary Engines

Event Analysis Engine

- Three algorithms: Prony, Matrix Pencil and Hankel Total Least Square
 - Coded into off-line tool within RTDMS
- Aimed at events resulting in sudden changes in damping

Damping Monitor Engine

- Ambient noise based. Continuous.
- Frequency Domain Decomposition Algorithm
- Provides early warning on poorly damped modes

Results from Two Engines

Mode Shape – Local Mode

Mode Shape Identified by FDD at 1.224 Hz

Cumberland oscillating against rest of system – local mode

Recent results at TVA

- Sept 18, 2006 Cumberland event:
 - Local 1.3 Hz mode damping changed from +1.5% to -0.2% and back to +1.5% during the event
 - TVA in-house oscillation alarm implemented
 - PSS installation recommended
- December 16, 2006:
 - One Cumberland unit in service
 - PSS had been installed at one unit
 - Local mode damping at +7.2% from OMS

- Two Cumberland units in service
- OMS showed local plant mode damping at +1.7% (alarm)
- PSS had been taken off-line
- Feb. 5, 2008:
 - Two Cumberland units in service
 - OMS showed local mode damping at +3% (alarm)
 - PSS was in service. Tuning recommended. Faulty PSS card found by manufacturer and fixed.

Recent results at TVA

- OMS helpful in detecting when PSS went off-line at Cumberland
- OMS helpful in showing PSS not effective even when on-line. Hardware problem fixed.
- OMS able to verify the local mode well-damped subsequently. No recent alarm from this mode.
- All recent alarms related to 0.45 Hz and 0.21 Hz eastern system inter-area modes.
- Benefits of real-time continuous monitoring from PMUs. Can detect oscillation problems early.

OMS Status

- Successful implementation of real-time code into TVA PDC
- Automatic detection of poorly damped electromechanical modes and their mode shapes
- Immense data size 30 samples a second, many minutes of data, many channels per PMU, many PMUs – memory requirements grow quickly.
- Reaching the limitations of 32 bit architecture already....
- Dedicated 64 bit 8 core processor at TVA
- OMS code translated into 64 bit architecture by Ryan Zuo at TVA

OMS Status

- OMS handles only TVA PMUs at present
- Results stored into a real-time database
- Other applications under development to export the results
 - graphical displays
 - protected webpages
 - operator alarms
 - real-time data streams for other utilities
- Near real-time displays updated onto a protected website at the moment
- Plan to extend engines to other eastern PMUs

WASHINGTON STATE

TVA Website example

🗄 EN 🔢 100%) 🕞 < 🚺 🍖 🗐 🔚 📆 🕼 10:53 PM

WASHINGTON STATE

Mozilla Firefox

TVA Website example

Future Work

- Implementation, testing and tuning at TVA
- Protected website for displaying OMS results
- Historical trends of mode damping from daily load changes, seasonal patterns, special events.
- OMS engines for Entergy and for Eastern Grid
- Operator alerts and alarms
- Operator Actions? Mode shape can tell between local mode, regional mode and inter-area mode. What then?
- Automatic controls