

NIST Interoperability Standards Update

Vahid Madani – PG&E (PSTT) Damir Novosel – Quanta Tech. (PSTT) Ron Farquharson – EnerNex Corp. Ken Martin – IEEE C 37-118

NIST Three Phase Plan

PHASE 1 Identify an initial set of existing consensus standards and develop a roadmap to fill gaps

PHASE 2 Establish public/private Interoperability Panel to provide ongoing recommendations for new/revised standards

NIST Domain Expert Working Groups

2009

T&D, Home-to-Grid, Building-to-Grid, Industry-to-Grid, PEV-to-Grid, Business and Policy, Cyber Security PHASE 3 Testing and Certification Framework

2010

March

September

NIST Phasor related tasks identified in this phase

- Priority Action Plan (PAP) number 13 Time Synch
- PAP 15 Cyber Security (somewhat)
- Harmonization of IEC 61850 and IEEE C37.118
- Participate in the SGIP

NASPI North American SynchroPhasor Initiative

First 16 NIST Framework Standards

	Domain Expert Working Groups	\$		9	Ø		Ť		
1	AMI-SEC System Security Requirements	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
2	ANSI C12.19 End Device (Meter) Tables		\checkmark	\checkmark				\checkmark	
3	BACnet Building Automation & Control Net			\checkmark	\checkmark			\checkmark	
4	DNP3 – Distributed Network Protocol		\checkmark		\checkmark	\checkmark	\checkmark		1
5	IEC 60870-6 – Inter-Control Center		\checkmark						
6	IEC 61850 – Comms Nets in Substations		\checkmark		\checkmark	\checkmark	\checkmark		
7	IEC 61968/61970 – Common Info Model		\checkmark	\checkmark					
8	IEC 62351 – Data Comms Security		\checkmark		\checkmark	\checkmark	\checkmark		
9	IEEE C37.118 - Synchrophasors		\checkmark			\checkmark			
10	IEEE 1547 – Distributed Resources		\checkmark		\checkmark	\checkmark	\checkmark		
11	IEEE 1686 – IED Cyber Security				\checkmark	\checkmark	\checkmark		
12	NERC Critical Infrastructure Protection	\checkmark							
13	NIST SP 800-53/82 Fed Info Sys Security	\checkmark							
14	Open Automated Demand Response	\checkmark	\checkmark	\checkmark				\checkmark	
15	Open Home Area Network Requirements							\checkmark	
16	ZigBee/HomePlug Smart Energy Profile							\checkmark	

ASP North American SynchroPhasor Initiative

Smart Grid & Phasor Issue Definition

... Juzation over comm. networks

Data from phasor measurement units

- IEEE C37.118 for PMU
- IEC 61850 seen as key standard for field equipment in the future
- Scope of IEC 61850 expanded for wide area communication; e.g. between substations
- Stream based communication or report based communication?
- Rate of publishing

Several applications requiring accurate t IEC 61850 / IEEE C37.118 / synchronization Time synchronization

- **PMUs**
- Sampled values fo
- IEEE 1588, provide
- Other methods for s

Objectives

Integrate IEEE C37.118 and IEC 61850; define PMU models in IEC 61850 based on **IEEE C37.118**

,EG-B?

- Develop requirements from Smart Grid application, on time synchronization, and time management
- Discuss migration paths

Key issues to consider

- Multiple applications support
- System reliability
 - Continued operation under single component failure
- Quality of Service guarantee
- Security control standard compliance
 - Confidentiality
 - Integrity
 - Authentication
 - Logging and audit
- Accommodate future needs

Balance near term and long term needs

C37.118 in a Substation

Not readily integrated with substation engineering, automation, and protection

- Automation C37.118 doesn't reuse IEC 61850 data semantics or wire protocol.
- Existing substation automation equipment cannot receive C37.118.
 - C37.118 only supports data streaming and not report by exception.
 - Substantial increases in the cost of using PMU data in substations
- Protection C37.118 only specifies the use of TCP or UDP.
 - Without access to lower layers of the communication protocol stack, difficult to reserve WAN/VLAN/LAN bandwidth
 - Cannot set the data delivery priority
 - Phasor data transmitted using C37.118 cannot be used for reliable system protection.
- Engineering No standard way to describe a PMU in IEC 61850 Substation Configuration Language (SCL).
 - No way to configure a system off line.

Issues with C37.118

- Types of data NASPINet needs to support exchange of other data including but limited to:
 - Historical phasor data
 - COMTRADE files
 - Alarm/events data
 - Network model configuration data
- Miscellaneous protocol issues
 - There are numerous error handling issues that need to be resolved. Consequently, C37.118 is not a highly reliable protocol
 - Quality and Timestamp loose meaning when C37.118 streams are aggregated and then split up

Issues with Current C37-118

- No means of guaranteed delivery
- Security C37.118 does not have security built in
 - RBAC required down to the Item level is needed
- Filtering one cannot receive only selected items of interest using C37.118
 - Topic based subscriptions are needed
 - Should be able to filter on location of the PMU data
- No context to data Phasor data without the context of network/device data has limited value
 - NASPINet should be integrated using a common network/device model such as IEC 61850 and/or IEC 61970 Common Information Model (CIM)

IEC/IEEE Joint Standard for Synchrophasors

- Joint development of the entire standard, not just harmonization with IEC 61850.
- Any parts of the synchrophasor standard that need to go into IEC 61850 will be part of that standard, not a separate standard.
- IEEE C37.118 could be split into measurement and communication standards which could simplify the joint IEC work.
 - The IEEE C37.118 communication method is widely used for Phasors at this time.
 - Transition time would be needed once / if transition from C37.118 to 61850 is to occur

Coordination with IEEE, IEC, and NIST on standard PMU developments

- Further formalize the process by expanding existing PSTT documents to become IEEE standards:
- PMU System Testing and Calibration Guide
- Guidelines for synchronization techniques Accuracy and Availability
- PMU Installation/Commissioning/Maintenance Guide
- SynchroPhasor Accuracy Characterization
- Standard PMU Definition / Basic Specification

Clarify role of PSTT in relationship to focused NIST activities on interoperability standards.

