Data Analysis of the 2/26/08 Florida Blackout

Luigi Vanfretti[†], Tatiana M. L. Assis^{ε}, Joe H. Chow[†], Luke Dosiek^{α}, John Pierre^{α}, Dan Trudnowski^{ω}, Yilu Liu^{δ}

†: RPI, ε : Fluminense Federal University, Brazil, α : University of Wyoming, ω : Montana Tech, δ : Virginia Tech

email: lvanfretti@ieee.org, chowj@rpi.edu

Power System Research Consortium (PSRC)

Rensselaer Polytechnic Institute ECSE Department

NASPI Work Group Meeting, Sacramento, CA June 4, 2009

(日) (四) (注) (注) (注) (注)

Outline

- Description of the Event
- Event Propagation Movie
- Disturbance Data Analysis
 - \blacktriangleright Modal Analysis from Power Signals
 - $\blacktriangleright\,$ Modal Analysis of Voltage Angle Oscillations
- Ambient Data Spectral Analysis of Power and Frequency Signals
- Conclusions

- 3

June 4, 2009

(日) (四) (日) (日) (日)

L. Vanfretti (RPI) (RPI)

FL Blackout Data Analysis

Event Description

- Disturbance was initiated by a failure on a 138 kV switch.
- Local primary protection and local back-up breaker failure protection was disabled for troubleshooting
- Remote backup protection relays performed delayed clearing of the 138 kV fault (1 ϕ fault evolved into 3 ϕ fault)
- Disturbance outcome (FRCC Report):
 - 25 transmission lines tripped involved in remote clearing
 - Generation loss: $\approx 2{,}500$ MW near fault + 1,800 MW across FRCC
 - Load shedding: 2,300 MW for initial fault clearing
 - Under-Frequency Load Sedding: 2,200 MW between UFLS zones in FL (other regions did not participate in UFLS)
 - Other: delayed clearing produced low voltages; two nuclear units tripped as designed

• Noticable interarea oscillations in the EI \Rightarrow for our analysis

3/20

L. Vanfretti (RPI) (RPI)

FL Blackout Data Analysis

June 4, 2009

Available PMU Data

 Unavailable data from NY due to communication upgrades, some data loss from several other regions.

Event Propagation Snapshots

SQ P

æ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Modal Analysis from Active Power Signals

- How are the modes propagated across the network?
- Analyze the power oscillations in different points of the EI.
 - ➤ Power oscillations from each mode indicate how the disturbance is being propagated.
- Shelby and Freeport are very close to Cordova.

Identified Modes from Power Oscillations

➡ Two oscillatory frequencies: $f_1 = 0.22$ Hz with $\zeta_1 = 15.97$ %, and $f_2 = 0.49$ Hz with $\zeta_2 = 8.6$ %

Cordova PMU Measurements and Frequency Components from ERA Approximation

L. Vanfretti (RPI) (RPI)

FL Blackout Data Analysis

June 4, 2009

11 / 20

Active Power Oscillations of $0.22~\mathrm{Hz}$ and $0.49~\mathrm{Hz}$

L. Vanfretti (RPI) (RPI)

FL Blackout Data Analysis

June 4, 2009

- 3

12 / 20

Propagation of 0.22 Hz and 0.49 Hz Power Oscillations

Simultaneous identification of Interarea Modes using Voltage Angle and Magnitude

PMU Measurements and Frequency Components from ERA Approximation

L. Vanfretti (RPI) (RPI)

FL Blackout Data Analysis

June 4, 2009

20

0.22 Hz Oscillations in the Voltage Angles - Modeshape

L. Vanfretti (RPI) (RPI)

FL Blackout Data Analysis

(≥) < ≥) ≥ June 4, 2009

15 / 20

イロト イヨト イヨト

0.49 Hz Oscillations in the Voltage Angles - Modeshape

L. Vanfretti (RPI) (RPI)

FL Blackout Data Analysis

June 4, 2009

Spectral Analysis of Power Signals

Two oscillatory frequencies: $f_1 = 0.2 - 0.3$ Hz and $f_2 = 0.45$ Hz

Periodograms of Active Powers at Orrington, Duval, and Dorsey Dorsev Duval

L. Vanfretti (RPI) (RPI)

FL Blackout Data Analysis

JF Power Periodgram vs Frequency Periodogram

18 / 20

э

L. Vanfretti (RPI) (RPI)

FL Blackout Data Analysis

June 4, 2009

イロト イボト イヨト イヨト

Conclusions

- Oscillatory modes using bus angle and line active power can be used to trace propagation of interarea modes.
- Disturbance Data
 - → 0.22 Hz mode Duval vs Orrington & Dorsey (South vs North)
 - $\blacktriangleright\,$ 0.49 Hz mode More complex mode shape (caterpillar type)
- 🖛 Ambient Data
 - \rightarrow 0.45 Hz mode Persistent (light damping)
 - → \approx 0.2-0.3 Hz mode not visible in JF and BRun Frequency (pivot of the system)

Acknowledgments

- Tony Weeks (Manitoba Hydro),
- Ritchie Carrol, and Paul Trachian (TVA)

19 / 20

June 4, 2009

L. Vanfretti (RPI) (RPI)

FL Blackout Data Analysis

Thank you! Questions?

20 / 20

æ

L. Vanfretti (RPI) (RPI)

FL Blackout Data Analysis

June 4, 2009