Using PMU's in Iceland

NASPI Work Group Meeting June 2008, Bellevue, Washington

Nils Gústavsson Manager System Operation

Overview

- 1. The Icelandic Transmission System and challenges in System Operations
- 2. The WAMS project
- 3. Results and future development

Location of Iceland with Distances over the Atlantic Ocean

Icelandic WAMS Project Goals

- Commissioning and tuning PSS
 Planda (2 units 150MW)
 - Blanda (3 units, 150MW)
 - Krafla (2 units, 60MW)
 - Fljotsdalur (6 units, 690MW)
- Commissioning of 690MW generation & load
- Real time monitoring of system stability for system operation
- Analysis of disturbances
- On-going processes to improve system stability further

Icelandic WAMS Implementation (1)

- WAMS installed to address stability in 132kV ring
- Currently 7-PMU system
- Data Centre in Landsnet Control Centre, Reykjavik

Icelandic WAMS Implementation (2)

Icelandic WAMS Implementation (3)

Fljotsdalur

Landsnet Control Room

Psymetrix StormMin	Psymetrix StormMinder Workbench - Landsnet - Datacentre: pdc-Ind - User: pdmAdmin											
<u>File View S</u> ettings <u>H</u> elp												
Dynamics Topological View Dynamics Circuit View Phasor Topological View Phasor Circuit View Offline Test Bench												
Overview	0,07-0,38 Hz 3,9 s	0,38-0,55 Hz 3,4 s	0,55-0,7 Hz 12,2 s	^{0,7-0,9 Hz} 3,2 s	0,9-1 Hz 2,2 s	^{1-1,7 нz} 11,5 s	1,7-4 Hz 4 s					

Time	Location	Mode	Message										
9.6.2008 11:28:44 GMT	BLANDA_B (V1LPM)/SIGALDA (V1LPM) Angle Differen	0,55-0,7 Hz	PDX1-3 event status alert										
9.6.2008 11:28:19 GMT	BLANDA_B (V1LPM)/SIGALDA (V1LPM) Angle Differen	0,55-0,7 Hz	PDX1-3 event status alarm										
9.6.2008 11:28:09 GMT	BLANDA_B (V1LPM)/SIGALDA (V1LPM) Angle Differen 0,55-0,7 Hz		PDX1-3 event status alert										
Domain Events System Events													
Active Profile: default Loaded Profile: default				Dynamics	Phasor								

Power System Stabiliser Tuning (1)

- WAMS central to PSS commissioning and tuning
- Wide-Area Measurements provided
 - Security during tests
 - Immediate feedback on PSS performance
 - Longer-term assessment of PSS performance
- Performance of PSSs thoroughly proven before acceptance

Power System Stabiliser Tuning (2)

Network switching tests

Power System Stabiliser Tuning (3)

Network & PSS switching tests

Power System Stabiliser Tuning (4)

- AVR injection probing tests
- WAMS used to
 - Ensure security of tests
 - Identify resonant mode frequencies
 - Identify network to AVR injection (controllability)

Wide-Area Response to Blanda AVR Injection

Power System Stabiliser Tuning (5)

Long-term observation of damping

- » 2 modes clearly improved
- » No degradation in performance

PhasorPoint PDX-2 Analysis

On-going Dynamics Analysis (1)

0.45Hz

- Oscillations in phase at all monitored locations
- Largest amplitude in P at Sigalda
- Sensitive to P output of one particular unit

PhasorPoint Voltage Angle Difference with PDX Damping and Mode Phase

On-going Dynamics Analysis (2)

- Interarea, dominant in the North and East
- Machines in132kV ring oscillating anti-phase to 220kV network
- More significant after Karahnjukar Unit 1 commissioned

PhasorPoint Voltage Angle Difference with PDX Damping and Mode Phase

On-going Dynamics Analysis (3)

- Karahnjukar local mode
- Observed in System Frequency only at Karahnjukar
- Power oscillations largest between Karahnjukar and Krafla

PhasorPoint Voltage Angle Difference with PDX Damping and Mode Phase

Disturbance Analysis

PMU data used for analysing disturbances
 E.g. Identifying loss of synchronism

Identification of Controller Malfunction

Tools Used

Psymetrix - PhasorPoint

- Incorporates 13+ years direct operational WAMS and dynamics analysis experience
- Operationally proven
 - proven value in real events
- Extensive dynamics analysis validation
 - simulated grid signals
 - proven value in real events
 - self-consistency statistical analysis of long-term results
 - customer power system tests
 - customer benchmarking
 - recent enhancements for planning & analysis applications approved by major transmission system operator

Results (so far)

- Stability has significantly increased with successful PSS tuning
- Knowledge of system dynamics has increased
- Improved capability to analyse disturbances
- Able to commission new generation with confidence

Future: Phasor View for Resynchronisation

Resynchronising the Fljotsdalur 220kV network

Future: Governor/ AGC Stability

- Addressing Governor/AGC Frequency Oscillations
- Detected frequency 0.015 to 0.045Hz

