ISO New England Smart Grid Investment Grant Update

> David Bertagnolli dbert@iso-ne.com

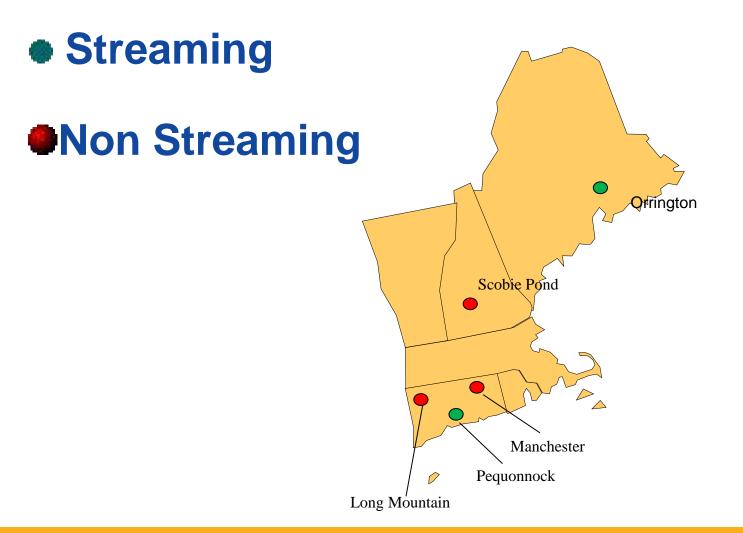
NASPI Work Group Meeting October 5-6, 2010

Project participants

- Project Transmission Owners (#PMUs)
 - Bangor Hydro (2)
 - Central Maine Power (4)
 - National Grid (6)
 - Northeast Utilities (15)
 - NSTAR (4)
 - United Illuminating (4)
 - Vermont Electric (2)
- Project Lead
 - Eric Wilkinson: 413-540-4686 (ewilkinson@iso-ne.com)
- Project Manager
 - KEMA Consulting
- Other Partners
 - Mehta Tech Inc.
 - Rensselaer Polytechnic Institute
 - V&R Energy Systems Research

Project Infrastructure Overview

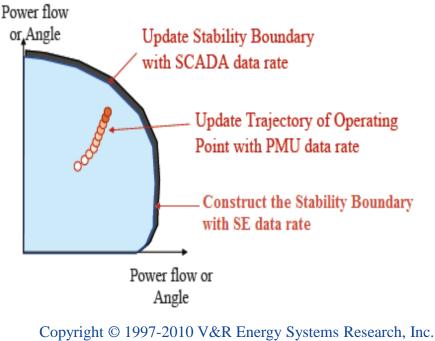
• PMUs


- 5 existing
 - Also serve as DDRs per PRC-002-NPCC
- At least 30 additional PMUs
 - Final sites by 10/31/10
 - Several desirable substations have no rack space for PMU
 - TOs selecting vendors (some TOs have preference)
 - PMUs provide coverage of New England 345 kV system and tie lines

PDCs

new england

- FIPS PDC developed by RPI
- One regional PDC at ISO
- One PDC at each TO (7)
- Continue streaming synchrophasor data to TVA SPDC



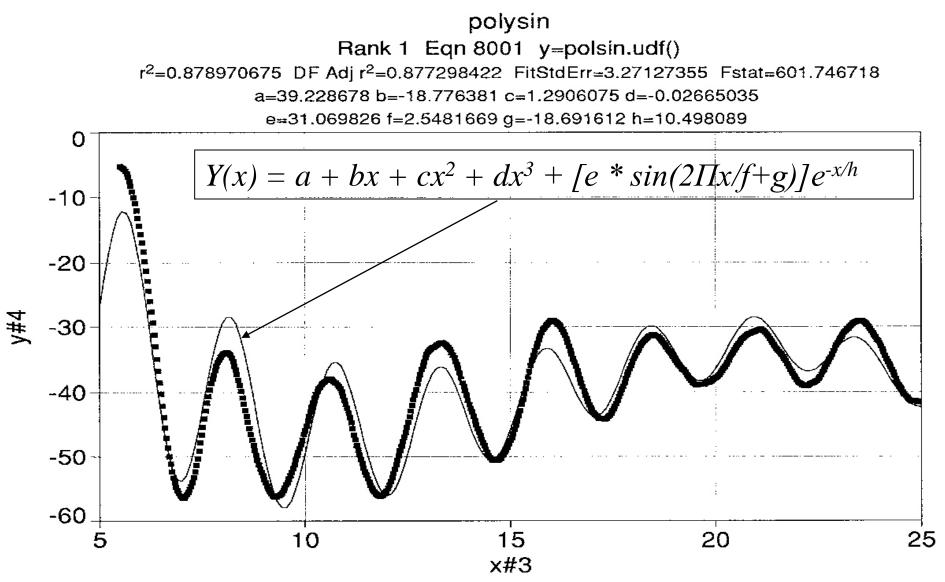
4

Synchrophasor Applications

 ROSE: uses synchrophasors, SCADA data and SE results for online calculation and visualization of the current operating point and its proximity to the stability boundary

All rights reserved.

Figure, see http://ewh.ieee.org/reg/1/809/Litvinov.pdf.



Synchrophasor Applications

- Performance tools
 - Data integrity: missing data issue
 - Latency:
 - Compare time of C37.118 packet & PDC receipt
 - Need micro-second time at the PDC
 - ISO-NE has never needed this technology
- Data management:
 - Identification of significant events:
 - Frequency deviation
 - Oscillation
 - Angular separation
 - Disturbance data management
 - Characterize disturbances

Classification of Events

Security Approach

- PMUs deployed by Multiple TOs:
 - Uniform approach to ownership and management of firewalls, routers, encryption, authentication, etc.
- Synchrophasor technology initially not deployed in control room
 - Data archiving potential for 1+ terabyte per week
 - Cyber security & Redundancy
 - Operators require well developed tools, operating procedures & training

Other Information

- Project Challenges:
 - Coordinating contract terms with finances
 - Developing statement of work and schedule
- Communications Architecture Challenges
 - Setting clear, achievable objectives and expectations
 - One way, bottom up communication structure
 - PMU to PDC: TCP/IP is sufficient
 - PDC to PDC: start with TCP/IP; explore UDP

Other Information

- Other useful info to share
 - GPS Clock issues
 - Micro-second accuracy is critical to synchrophasors
 - Interoperability between GPS clock and PMU
 - Engineering & maintenance of GPS clock, specifically the connections to IEDs
 - Important to establish and maintain relationships between project managers, TOs, PMU & PDC vendors
 - Need vendors to provide extensive engineering support
 - Need to monitor & prepare for emerging standards
 - NIST, IEEE PSRC, NERC/NPCC

