Grid Protection Alliance Update

NASPI Working Group Meeting October 5-6, 2010 Arlington, VA

Primary Initiatives Status

- PDC Test Bench
 - Beta version available
- PMU Registry
 - Accepting data entry on web site
 - Distributed system deployment developing
- Phasor Gateway
 - Moving towards NASPInet

PDC Test Bench Purpose

The purpose of the PDC Test Bench is to test a Phasor Data Concentrator (PDC) by varying the inputs and comparing the subsequent outputs with expected results.

Project Requirements

- Must support the common phasor protocols
- Must be able to vary input
- Must be able to produce more data than can be accepted by any PDC
- Must produce meaningful and reproducible results
- Must be configurable by the end user
- Must support extended periods of testing
- Must support analysis export in human readable comma separated files
- Must support custom analysis modules

PDC Test Bench Overview

Using the PDC Test Bench

- Configure and start PDC.
- Enter information into all fields on the Test Bench interface.
- Save changes to a package file.
- Start the PDC Test Bench. Note: The concentrator must be running before starting the Test Bench.
- When satisfied, stop the PDC Test Bench. Test results are stored in the receiver's output file and timestamp file.

Test Bench Images

File	Concentration			
Input d C:\Pro Config	ata file: jects\PDC Test Ber uration frame file:	ceiver	Browse	
C:\Pro Frame 30	rate: frames/sec	nch\TestBench\Currej	Browse	
Output ©	protocol: TCP UDP	Access ID: 235		
Numbe 5	er of PMUs:	Port range: 44000	- 44004	

•	C:\Users\staphen\Documents\Test Bench Tests\testb					
	File					
	Generators Concentrator Receiver					
	Input protocol: Port. TCP 8900 UDP					
	Output data file: ien\Documents\Test Bench Tests\testbench.bin Browse					
	Dhen\Documents\Test Bench Tests\testbench.rft Browse					
	Start					

Analyzer Images

PDC Test Bench - Test Analy	zer		
Package file:	C:\Users\staphen\Do	Browse	
Analyst assembly name:	C:\Projects\PDC Test	Browse	
Analyst type name:	yst.FrequencyAnalyst		Do Browse
		Start	est Browse
	Analyst type name:	yst.FrequencyAnal	yst
			Stop
			0

Analyst Example Results

	А	В	С	D	E	F	G
1	Timestamp	Source Cell 1	Received Cell 1	Received Cell 2	Received Cell 3	Received Cell 4	Received Cell 5
2	634213098750666666	59.96500015	59.9640007	59.9640007	59.9640007	59.9640007	59.9640007
3	634213098751666666	59.9659996	59.96300125	59.96300125	59.96300125	59.96300125	59.96300125
4	634213098752000000	59.96300125	59.96500015	59.96500015	59.96500015	59.96500015	59.96500015
5	634213098752666666	59.96300125	59.95999908	59.95999908	59.95999908	59.95999908	59.95999908
6	634213098753000000	59.95999908	59.9640007	59.9640007	59.9640007	59.9640007	59.9640007
7	634213098754666666	59.97499847	59.9620018	59.9620018	59.9620018	59.9620018	59.9620018
8	634213098755000000	59.9620018	59.95700073	59.95700073	59.95700073	59.95700073	59.95700073
9	634213098755666666	59.96300125	59.96500015	59.96500015	59.96500015	59.96500015	59.96500015
10	634213098756000000	59.96500015	59.97200012	59.97200012	59.97200012	59.97200012	59.97200012
11	634213098756666666	59.97200012	59.9620018	59.9620018	59.9620018	59.9620018	59.9620018
12	634213098757000000	59.9640007	59.9620018	59.9620018	59.9620018	59.9620018	59.9620018
13	634213098757666666	59.9620018	59.95800018	59.95800018	59.95800018	59.95800018	59.95800018
14	634213098758000000	59.97399902	59.9659996	59.9659996	59.9659996	59.9659996	59.9659996
15	634213098759000000	59.97000122	59.9620018	59.9620018	59.9620018	59.9620018	59.9620018
16	634213098760666666	59.9640007	59.97100067	59.97100067	59.97100067	59.97100067	59.97100067
17	634213098761666666	59.95899963	59.9659996	59.9659996	59.9659996	59.9659996	59.9659996
18	634213098762000000	59.95899963	59.9679985	59.9679985	59.9679985	59.9679985	59.9679985
19	634213098762666666	59.9679985	59.9640007	59.9640007	59.9640007	59.9640007	59.9640007
20	634213098763000000	59.96300125	59.96699905	59.96699905	59.96699905	59.96699905	59.96699905
21	634213098763666666	59.96699905	59.9640007	59.9640007	59.9640007	59.9640007	59.9640007

What's Available in the BETA?

- Full framework for performing detailed stream analysis of cached output
- Example test analyzer that computes simple latency (received time minus sent time) and compares input and output frequencies
 - Extendible to perform more detailed tests this is work for you!

Where do I get it?

http://pdctestbench.codeplex.com/

Warning: Some assembly coding required. ©

What is the PMU Registry?

The NASPI PMU Registry is the source of meta data on synchrophasor devices and the measurements collected by them throughout North America.

- Where is the measurement taken?
- What is the measurement?
- Who owns the measurement?
- ... and for gateways, where can I get it?

Generic Architecture

PMU Registry Data Overview

- Simple Data Hierarchy
 - Regional concentration
 - Corporate (TO) concentration
 - PMU
 - Measurement Descriptors
- Allows for multiple layers of data concentration and creation of "virtual measurements"
- Allows PMUs that do not provide data to external users to be a part of the registry
- Creates standard IDs and stores common names for PMUs as well as measurement descriptors.

What's here today? Metadata...

PMU Registry Plans

- SGIG project winners currently investigating registry requirements for their individual architectures
- Clear need to accelerate development of components to allow deployment as an integrated, multi-node system
- PMU Registry established as it's own open source project in August 2010
- Security and framework (.net 4.0) improvements planned for January 2011 release.

How do I get to it?

https://www.naspi.net/

Source code also available: http://pmuregistry.codeplex.com/

Setting the stage for NASPInet

- To publish a signal on NASPInet, an entity must:
 - Have a NASPInet Phasor Gateway
 - Register the measurement (signal) with the NASPInet infrastructure.
 - Configure the Phasor Gateway to designate the authorized receiving Gateways (this configuration can be "all") for this signal.
- To subscribe to a signal on NASPInet, an entity must:
 - Have a NASPInet Phasor Gateway
 - Discover the measurement (signal) needed through the NASPInet infrastructure
 - Request authorization to receive this signal from the publishing Phasor Gateway owner.

First Step: An Open Synchrophasor Gateway

End Goal: A General Purpose Data Gateway

Secure Information Exchange Gateway

Phasor Gateway Plan Summary

- openPG Version 1.0 late 2011
- Entergy PG Appliance early 2012
- openPG Version 2.0 late 2012
- SIEGate (Beta Software) early 2013
- SIEGate Appliance late 2013

The progression toward NASPInet.

SIEGate

A generalized, security hardened appliance for the exchange of real-time grid operating information that is both open source and commercialized through a major vendor

- Available in 2013
- Developed by UIUC/GPA
- Commercialization by ALSTOM
- Testing by PNNL
- Demonstration at ALSTOM and PJM
- Funded by DOE-CEDS with a major costshare contribution by NERC

