Synchrophasor based Tracking Three Phase State Estimator and its Applications

DOE Advanced Synchrophasor Research Funding

February 25, 2010

V. Centeno

Virgilio@vt.edu

NASPI Meeting, Austin, Texas

Center for Power and Energy Engineering

Project Objectives

Develop analytical tools for the implementation of a Synchrophasor-Based-Tracking three-phase state estimator for Dominion's 500 kV System.

Develop the transducer calibration techniques required for the proper implementation of the estimator

Develop analysis and visualization tools required for the application of the estimator to unbalance detection and intelligent islanding in the Dominion 500kV System

Project Budget

Phase	Virgini	a Tech		n Virginia wer	Quanta T	Total per	
Phá	DOE	Cost Share	DOE	Cost Share	DOE	Cost Share	Year
1	\$219,380	\$82,841	\$150,000	\$153,448	\$294,740	\$75,690	\$976,099
2	\$214,408	\$87,515	\$200,000	\$195,717	\$82,165	\$21,060	\$800,865
3	\$66,206	\$67,770	\$250,000	\$255,136	\$22,890	\$22,450	\$684,452
Total	\$499,994	\$238,126	\$600,000	604, 301	\$399,795	\$119,200	\$1,499,798 \$961,627
	\$738	,129	\$1,20	4,301	\$518	\$2,461,416	

Year	20)09			20)10			2011				2012			
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Task 1 Project Management																
Phase 1 – Analytical Studies																
Task 2 Establishment of study system database																
Task 3 Tracking Three Phase State Estimator																
Task 4 Tracking Three Phase State Estimator Applications																
Task 5 Three Phase Estimator Display Development																

Phase 1. Analytical Studies Tasks

Task 2: Establishment of study system database

- a) Non-disclosure agreements
- b) Establish a study system model

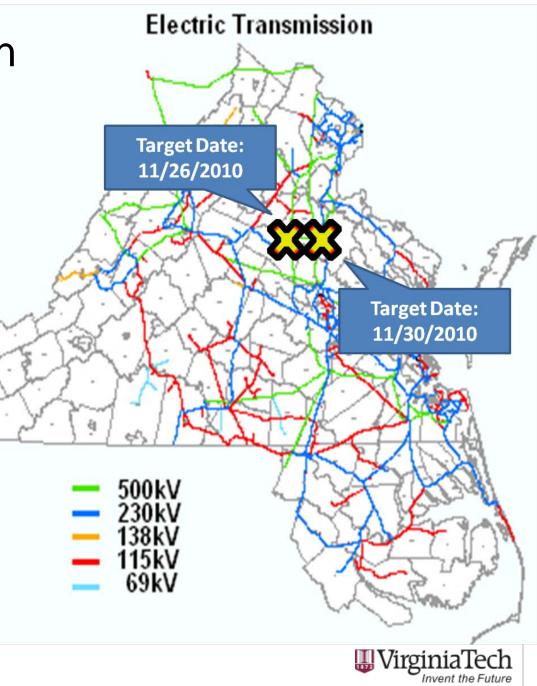
Task 3: Tracking three phase estimator

- a) Develop algorithms and software for the three-phase tracking state estimator for the 500kV system
- b) Develop algorithms to determine the optimal placement of Synchrophasors for full observability of the threephase system.

Phase 1. Analytical Studies Tasks:

Task 4: Three Phase estimator applications

- a) Develop procedures and measurement sequences to estimate the magnitude and phase error of instrument transformers
- b) Develop real time tools for the detection and analysis of unbalanced conditions
- c) Develop real time tools for the detection and identifying of islanding scenarios.
- d) Develop three-phase estimator visualization tools.


Phase I: Dominion

PMU Installation at:

North Anna Ladysmith (generator stations)

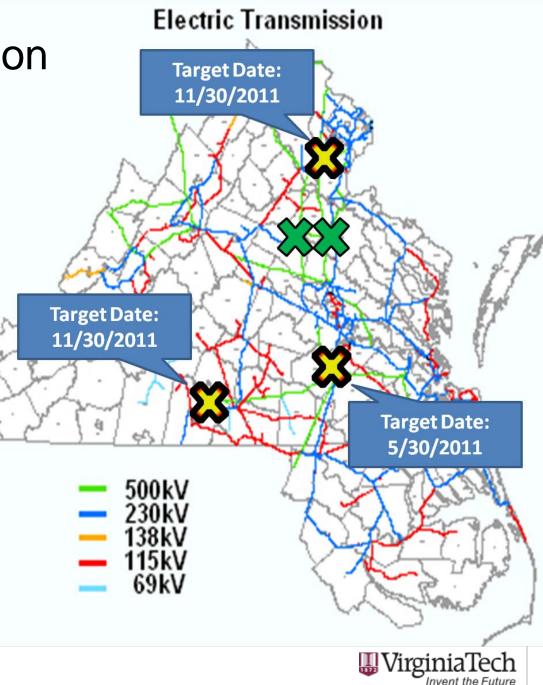
Development architecture for data concentration and calculation

Purchase and installation of synchrophasor vector processor.

Year	2009					010)		2011				2012			
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Phase 2 – Pilot and Prototype Studies																
Task 6 PDC/Server System Integration, specification and selection																
Task 7 Tracking Three Phase estimator Lab testing and demonstration																

Phase 2: Pilot and Prototype Studies

- a) Select a Dominion substations and test performance of the algorithms and measurement sequences to determine the magnitude and phase error for instrument transformers.
- b) Use Dominion's full system model to test the performance of:
 1) Three-phase estimator algorithm
 2) Unbalance detection and tracking algorithm
 3) Islanding algorithms and enhanced optimal PMU placement
- d) Use the 3-phase estimator to test the performance of the visualization tools developed for the estimator.
- c) Determine the minimum requirements and select the commercial data concentrator needed to implement the three-phase tracking state estimator in Dominion Virginia Power's 500 kV system.


Phase II: Dominion

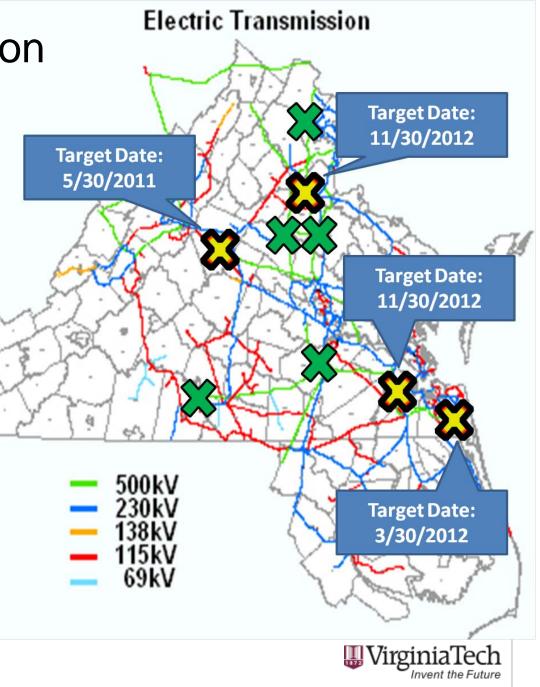
PMU Installations: Carson Substation Bristers Substation Clover Substation

Other Activities:

Purchase and preliminary setup of visualization server for tracking estimator

Database licenses

Year	2009					010			20)11		-	2012			
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Phase 3 - Full Scale Demonstration																
Task 8 PDC field verification and installation																
Task 9 Tracking estimator field installation and verification																



Phase III: Dominion

PMU Installations

Fentress Substation Cunningham Substation Chancellor Substation Septa Substation

Other Activities: Testing and commissioning of Tracking Estimator Visualization Software

Project Team

Virginia Tech

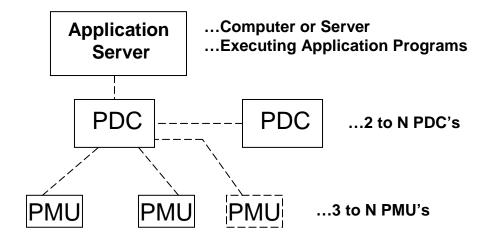
Arun Phadke, PI Jim Thorp, Virgilio Centeno - Co-PIs

Dominion Virginia Power

Mathew Gardner, PI Richard Purdy, Mark McVey, Terry Fix – Co PIs

Quanta Technology

Damir Novesel, PI Yi Hu, David Elizondo - Co-PIs


¿Preguntas?

- Three-Phase Estimator Interface and Displays Development
 - Stand alone applications, completely separated from the existing EMS/SCADA system
 - System Display Application. Display phasor measurements on a one-line diagram of Dominion's 500 kV transmission system and identify transmission network elements that operate in unbalance conditions.
 - Tabular Display Application. List power system elements that operate under unbalanced conditions.
 - System Islanded Display Application. Observe the separated system and capture its behavior.
 - Trending Display Application. Show the trends of unbalance conditions of the system and their relationships to the season, time of the day, etc.

 Ensure that the PMU, PDC and Application Server components are integrated to function as one system.

