Synchro-Phasor Vision for New England

Andrew Armenia - RPI Prof. Joe Chow – RPI Harish Mehta – Mehta Tech

NASPI Meeting Sacramento June 4, 2009

New England Synchro-phasor system

- 5 PMUs in-service
 - All functioning as Dynamic Disturbance Recorder (DDRs)
 - Event detection & recording at high rate (720 per second)
 - Continuous recording of synchro-phasor at slow rate (60 per second)
 - 2 of 5 streaming synchro-phasor to TVA SPDC (30 per second)

New England Synchro-phasor system

- No direct access to synchro-phasors
 - Historical data available from TVA
 - ISO-NE & Transmission Owners (TOs) cannot deploy applications
 - ISO-NE & TOs need access to synchro-phasors from neighbors

New England Synchro-phasor system

- Flexible Integrated synchro-Phasor System (FIPS)
 - Provides some functions of NASPInet
 - Two year development & deployment timeframe
 ISO-NE & TOs will gain knowledge & experience

Initial Configuration

New England PMUs

Step 1

New England PMUs

Step 2

New England PMUs

Step 3

New England PMUs

Step 4

New England PMUs

Integration with NASPInet

New England PMUs

FIPS PDC Issues

• Data Storage in Databases

- Data is fundamentally "2-D": (time, channel) vs. (value)
- Most existing databases don't work well with this model
- Simplifying assumption: ranges of consecutive data points

- Dedicated Time-Series Storage
 - The data lends itself to a very simple data structure
 - Fixed length records in flat files
 - Use one flat file per channel (or split & index if file system limits arise)
 - Use binary search algorithm to find data

- Data Interchange
 - Need to exchange channel IDs
 - Need a means to request streams or archived data from PMU
 - NASPInet may address these issues
 - Can it be done before NASPInet?

- User Interface
 - Uses a "Model-View-Controller" framework
 - Provides a degree of extensibility
 - Add metadata to database: channel names, disturbance events, ...
 - Supports data export in many formats

- "Quality of Service" can mean many things...
 - We really need 2 types of service
 - "Archival" reliability
 - "Realtime" timeliness
 - TCP vs. UDP vs. Custom "selective repeat" protocol

PDC Architecture for QoS

