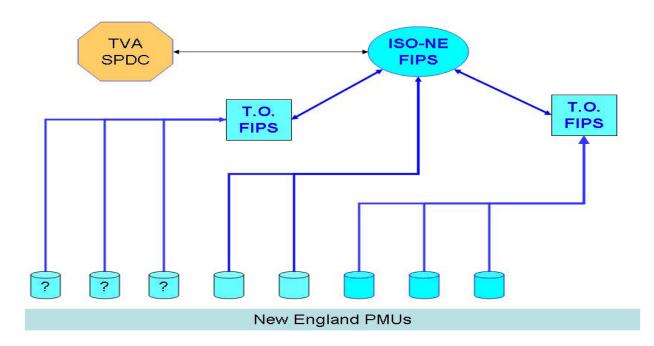
ISO New England Smart Grid Investment Grant Overview

David Bertagnolli – ISO New England Professor Joe Chow – RPI and PSRC Harish Mehta – Mehta Tech, Inc.

> NASPI Work Group Meeting February 24-25, 2010

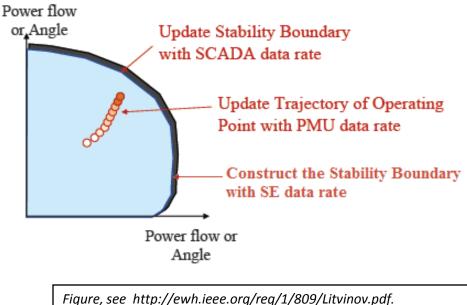

Project Overview

- Project goal:
 - "Provide the Smart Grid technology platform upon which advanced analysis and visualization tools can be deployed to enhance situational awareness."
- Technology:
 - Enhanced Phasor Data Concentrator
 - Flexible Integrated Phasor System (FIPS)
 - Uses vendor neutral protocols capable of handling PMUs of various designs and capabilities
 - Support for various communication schemes:
 - Corporate WAN (SONET, etc.) and/or commercial services (MPLS, FRAME, etc.)
- \$18 million total, \$7.9 million from DOE

System Design Elements

Expanded T.O. FIPS/PDC Deployment

- Approximately 30 additional locations
- Up to 7 FIPS/PDCs at Transmission Owners
- Synchrophasor Application:


50

new england

- Region of Stability Existence (ROSE)

Region of Stability Existence (ROSE): Utilizing PMU Data

 ROSE uses synchrophasors, SCADA data and SE results for on-line calculation and visualization of the current operating point and its proximity to the stability boundary

This project is special because...

- Distributed approach:
 - Not one central, Super PDC
 - Data directly available to Transmission Owners
- FIPS PDC:
 - Database designed for retrieval of data
 - Uses open source software
 - TVA Super PDC open source software
 - ISO-NE cyber security & IT requirements addressed at the start
 - User interface tools to retrieve, manage & analyze synchrophasor data

Project Participants

Project lead

new england

- ISO New England: 1 Sullivan Road, Holyoke, MA 01040
- Dave Bertagnolli: 413-535-4330 (dbert@iso-ne.com)
- Eric Wilkinson: 413-540-4686 (ewilkinson@iso-ne.com) Technical contributors
- Andrew Armenia Rensselaer Polytechnic Institute
- Luigi Vanfretti Rensselaer Polytechnic Institute
- Jim Hackett Mehta Tech, Inc.
- Tony Ranson Mehta Tech, Inc.
- Mariana Vaiman V&R
- Dave Hoyt ISO New England
- John Galloway ISO New England
- Dave Hotchkiss ISO New England

Additional information on: <u>Synchrophasor Infrastructure and</u> <u>Data Utilization (SIDU)</u> <u>for New England</u>

A distributed approach to collecting and distributing synchrophasor data

PMUs

 Synchrophasors from approximately 30 additional substations

– 5 existing substations with multi function PMUs

- Approximately 560 channels total

 Average of 16 synchrophasors per substation
- Synchrophasor can originate in any device:
 - Dedicated PMU, Other PDCs Power Donuts, etc.
 - New or existing relays
 - Additional cyber security issues
 - New or existing multi-function devices
 - DFRs & DDRs: higher resolution data available

PMU Owners

- All PMUs owned by the host TO (7)
 - 1. Bangor Hydro (2)
 - 2. Central Maine Power (4)
 - 3. National Grid (6)
 - 4. Northeast Utilities (15)
 - 5. NSTAR (4)
 - 6. United Illuminating (4)
 - 7. Vermont Electric (2*)

*may locate some PMUs on distribution system

PMU Location Criteria

- Many factors:
 - Major substation
 - Physical access, convenience, telecommunications
 - Application value
 - State estimator observability
 - Proximity to areas with stability/oscillatory phenomena
- Also consider NERC/NPCC requirements

 PRC-002-NPCC-01

Security Approach

- Physical security
 - Existing NERC Standards are adequate for all SCADA and synchrophasor data
- Cyber security & Critical Data Issues
 - Cyber security protection may impact performance
 - Classification as Critical Data has similar implications
 - Initially, synchrophasors not critical data
 - Provide data for researchers & development of tools (analysis, visualization, etc.)
 - At some point in the future, System Operators may make some operating decisions based on synchrophasors
 - > Design assumes synchrophasor data is critical
 - Performance issues addressed later
 - Control through this system not envisioned

Project Timeline

- By end of 2010:
 - Establish FIPS PDC at ISO-NE
 - Communicate with at least one existing PMU
 - Install some new PMUs
- By end of 2011:
 - Establish communications between ISO FIPS & TVA
 - Establish FIPS at one or more Transmission Owners
 - Communicate with Transmission Owner FIPS
 - Communicate with remaining existing PMUs
 - Communicate with some of the new PMUs
 - Install more new PMUs
 - Install ROSE software
- By end of 2012:
 - Establish FIPS at remaining Transmission Owners
 - Communicate with remaining FIPS
 - Install remaining new PMUs
 - Communicate with remaining new PMUs
 - Develop ROSE visualization